

LT 14 Western Isles HVDC

Arnish Moor Drainage Impact Assessment February 2025 Page i of vi

This page left intentionally blank for pagination.

Mott MacDonald St Vincent Plaza 319 St Vincent Street Glasgow G2 5LD United Kingdom

T +44 (0)141 222 4500 mottmac.com

LT 14 Western Isles HVDC

Arnish Moor Drainage Impact Assessment

February 2025

Issue and Revision Record

Revision	Date	Originator	Checker	Approver	Description
P01	16/09/24	E. Walker/ A. Bukhari	A. Ruiz-Diaz	R. McGowan	First Issue.
P02	11/10/24	E. Walker	A. Ruiz-Diaz	R. McGowan	Second Issue with minor changes.
P03	13/11/24	E. Walker	A. Ruiz-Diaz	R. McGowan	Third issue including response to SSE comments.
P04	04/02/25	A. Ruiz-Diaz	A. Ruiz-Diaz	R. McGowan	Planning Submission
P05	17/02/25	E. Walker	A. Ruiz-Diaz	R. McGowan	Updated to include response to SSE Legal comments.

Document reference: 109647-MMD-ARNI-XX-RP-CE-0002 P05

This document is issued for the party which commissioned it and for specific purposes connected with the abovecaptioned project only. It should not be relied upon by any other party or used for any other purpose.

We accept no responsibility for the consequences of this document being relied upon by any other party, or being used for any other purpose, or containing any error or omission which is due to an error or omission in data supplied to us by other parties.

This document contains confidential information and proprietary intellectual property. It should not be shown to other parties without consent from us and from the party which commissioned it.

Contents

1	Intro	duction	1
	1.1	Project Overview and Scope	1
	1.2	Site Location	1
	1.3	Data Sources	3
	1.4	Standards and Guidance	4
2	Exis	ting Conditions	5
3	Foul	Water Drainage Strategy	11
	3.1	Developed Sites	11
		3.1.1 Proposed Solution	11
		3.1.2 Foul Water Units	12
	3.2	Construction Phase	13
4	Surf	ace Water Drainage Strategy	14
	4.1	Design Guidance and Policy	14
		4.1.1 Climate Change	15
		4.1.2 Disposal of Flows	15
	4.2	Proposed Surface Water Drainage Strategy: Developed Sites	17
		4.2.1 Permanent Works	18
		4.2.2 Proposed Permanent Development Areas	19
		4.2.3 Pre-Development Runoff Rates for Permanent Structures	19
	4.3	Proposed Surface Water Drainage Strategy: Construction Phase	20
		4.3.1 Temporary Features	21
		4.3.2 Proposed Temporary Development Areas	21
		4.3.3 Pre-Development Runoff Rates for Temporary Structures	21
	4.4	Post-Development Discharge Rates and Proposed Attenuation Volume	22
	4.5	Exceedance Events	22
	4.6	Hydraulic Modelling: Convertor Detention Basin (AT-01)	23
5	Wate	er Quality Control	25
	5.1	Developed Site Water Pollution Hazards	25
		5.1.1 External Access Road	26
		5.1.2 Embankments of the Converter Station & Substation Platforms	26
	5.2	Construction Phase Water Pollutant Hazards	27
		5.2.1 Transportation of Silts and Fines	27
		5.2.2 Spillage of Hazardous Substances	28
		5.2.3 Waste Materials	28
	5.3	Water Quality Design Criteria	28

6	Conclusions	29
Appe	endices	30
Α.	Greenfield Runoff Calculations	31
В.	Attenuation Volume Calculations	32
C.	Water Quality Simple Index Approach	33

Tables

Table 1.1: Coordinates of Permanent and Temporary Compound Platforms	2
Table 1.2: Data Sources	3
Table 1.3: Standards and Guidance	4
Table 2.1: Summary of Existing Conditions	5
Table 3.1: Summary of Foul Water Units	12
Table 4.1: Drainage Corridor	18
Table 4.2: Summary of Permanent Impermeable Areas	19
Table 4.3: Permanent Catchment Pre-Development Runoff Rates	19
Table 4.4: Summary of Temporary Impermeable Areas	21
Table 4.5: Temporary Catchment Pre-Development Runoff Rates	22
Table 4.6: Post-Development Discharge Rates	22
Table 4.7: Hydraulic Modelling Parameters	23

Figures

Figure 1-1: Arnish Moor Site Boundary	2
Figure 1-2: Permanent and Temporary Platforms Within Arnish Moor Site with Peat Depths	3
Figure 2-1: Existing Topography of Arnish Moor Site	7
Figure 2-2: Existing Drainage of Arnish Moor Site	8
Figure 2-3: Arnish Moor Scottish Potable Water Assets	8
Figure 2-4: Scottish Water Foul Water Assets	9
Figure 2-5: Geology of Arnish Moor Site	9
Figure 2-6: SEPA Drinking Waters Protected Areas Arnish Moor Site	10
Figure 2-7: SEPA Surface Water Flooding Maps	10
Figure 3-1: Additional land for sewer connection	12
Figure 4-1 Peat zoning with proposed pond locations	16
Figure 4-2 Typical detail of a swale	17
Figure 4-3 Typical detail of a filter drain	18
Figure 4-4 Typical detail of a detention basin with a forebay or settlement lagoon.	20

1 Introduction

This document outlines the Arnish Moor drainage strategy for a proposed High Voltage Direct Current (HVDC) converter station and Alternating Current (AC) substation.

1.1 Project Overview and Scope

The applicant is seeking Planning Permission in Principle (PPiP) under the 1997 Act for consent to construct and operate a new strategic transmission hub approximately 2km southwest of Stornoway on the Isle of Lewis (the 'Site'). The project is referred to and described as the Lewis Hub (and hereafter also referred to interchangeably as 'the Proposed Development').

Mott MacDonald Limited's (MML) scope of works is designing the site's civil works and platform design, to accommodate the HVDC convertor station within Arnish Moor. Practically the AC substation platform design shall be similar to the adjacent HVDC converter station. The scope does not cover the internal drainage design of the substation and converter station sites and as such these are not discussed within this report.

Also designed by other parties is the HVDC cable route, for which landfall is situated approximately 3- 4km away from the Arnish Moor Site.

The purpose of this report is to provide a high-level summary of the drainage strategy for flows in and out of the site, as well as any impacted watercourses. Any land drains impacted shall be diverted where necessary, to tributaries of the nearest watercourse, the River Creed.

Both the temporary works during construction, including laydown areas and permanent works and operation phase are considered in this report.

The site features are as follows:

- Permanent Access Roads proposed roads connecting to A859 and the Arnish Road shall provide access to the AC substation and Converter station.
- HVDC Converter Station Site Platform Site platform to be +55.500 mAOD,
 - HVDC Convertor Station Located within platform,
 - o Internal site roads.
- AC GIS Substation Platform Site Platform to be +55.500 mAOD,
 - AC 400kV 132kV GIS substation Located within platform,
 - o Internal site roads.
- Temporary Construction Compounds
 - Laydown Area 2 To be at 55.50mAOD with an area of 39,900m²
 - Laydown Area 3 To be 55.50mAOD with an area of 20,500m².

1.2 Site Location

The new proposed site for converter station and substation are to be located within the Arnish Moor site and adjacent to Macaulay Farm & College, an education centre for students with special needs, east of the A859 and south of Lews Castle and the existing Marybank Quarry. Stornoway township lies north-east of the site. Next Figure shows the Arnish Moor site boundary.

Figure 1-1: Arnish Moor Site Boundary

Source: SSEN Red Line Boundary Site 8 Macaulay Farm LT14-LEWI-0802-DR-0001

The proposed layout that indicates the AC Substation, HVDC Convertor Station and all Laydown Areas is shown in Figure 1-2, Laydown area 1 was removed during optioneering. Table 1.1: Coordinates of Permanent and Temporary Compound Platforms gives the coordinates (centrally at the platforms) of the permanent converter station and substation platforms as well as the associated temporary construction compounds (TCCs).

Table 1.1: Coordinates of Permanent and Temporary Compound Platform	rms
---	-----

Reference	Permanent/ Temporary	Easting (m)	Northing (m)
AC Substation	Permanent	140402	931769
HVDC Converter Station	Permanent	140656	931823
Laydown Area 2	Temporary	140006	931715
Laydown Area 3	Temporary	140848	931966

Figure 1-2: Permanent and Temporary Platforms Within Arnish Moor Site with Peat Depths

Source: Proposed Permanent Surface Water Layout - 109647-MMD-ARNI-XX-DR-CE-0003.

1.3 Data Sources

The following data sources have been used for this assessment:

Table 1.2: Data Sources

Name	File Ref	Source	Date Received	Revision
Aerial Maps	-	Microsoft, Bing Maps	August 2024	-
OS Mapping	0100022432	Ordnance Survey	-	-
British Geological Survey (BGS) Website	-	BGS website	August 2024	-
Redline Boundary Site 8 Macaulay Farm	LT14-LEWI-0802-DR-0001	SSEN	April 2024	P03
LT14 Western Isles HVDC Drainage Design Planning Support Scope of Works	-	SSEN	-	-
SSEN LT14 Lewis Substation & Convertor Hub Layout Design Basis Statement	LT14-SSEN-XX-XX-RP-C-001	SSEN	July 2024	00
Arnish Moor Permanent Drainage Layout	109647-MMD-ARNI-XX-DR-CE- 0003	Mott MacDonald	November 2024	P03
Arnish Moor Temporary Drainage Layout	109647-MMD-ARNI-XX-DR-CE- 0004	Mott MacDonald	November 2024	P03
Arnish Moor Foul Water Layout	109647-MMD-ARNI-XX-DR-CE- 0001	Mott MacDonald	November 2024	P04

Name	File Ref	Source	Date Received	Revision
Arnish Moor Site Water Supply Layout	109647-MMD-ARNI-XX-DR-CE- 0006	Mott MacDonald	November 2024	P04
LT14 Western Isles Arnish Moor Flood Risk Assessment	109647-MMD-ARNI-XX-RP-CE- 0005	Mott MacDonald	August 2024	P01
Peat Probing Factual Report	109647-MMD-00-XX-RP-GE- 0002	Mott MacDonald	April 2024	В
LT14 Western Isles HVDC Geotechnical and Geoenvironmental Preliminary Desk Study	109647-MMD-00-XX-RP-GE- 004-C	Mott MacDonald	October 2023	С
LT14 Western Isles HVDC Site Observation Note	109647-MMD-00-XX-TN-CE- 0019	Mott MacDonald	August 2023	P01
Standardised Drainage Strategy	ASTIDC-STAN-MMD-DRAI- INFR-RPT-C-0004	SSEN/Tony Gee's	June 2024	P04
Drainage Strategy Drainage Split Network Technical Note	ASTIDC-STAN-MMD-XX-XX- TN-C-0002	SSEN/Tony Gee's	June 2024	P01
Scottish Water Records	-	Scottish Water	August 2024	-
SEPA Flood Maps	-	SEPA	August 2024	-
SEPA Drinking Water Protected Area Maps	-	SEPA	-	-

1.4 Standards and Guidance

The following standards and guidance have been used for this assessment:

Table 1.3: Standards and Guidance

Document Name	Document Reference	Publisher
Building Standards Technical Handbook – Non-Domestic	-	Scottish Government
Gravity drainage systems inside buildings	BS EN 12056-2:2000	British Standards Institute
Local Flood Risk Management Plan	-	Western Isles Council
National Planning Framework 4 (NPF4) 2024	NPF4	Scottish Government
Outer Hebrides Local Development Plan	-	Western Isles Council
SP-NET-CIV-502 Drainage Specification	SP-NET-CIV-502	Scottish Hydro Electric Transmission
SP-PS-419 Transformer Bund Specification	SP-PS-419	Scottish Hydro Electric Transmission
The SuDS Manual	C753	Construction Industry Research and Information Association

2 Existing Conditions

The existing conditions of the Arnish Moor site are summarised in Table 2.1.

Conditions		Source of data
Conditions	Description	Source of data
Location	The Arnish Moor site is located just south of Stornoway town on the Isle of Lewis, grid reference NB 140131 931885. The site is on the south-eastern side of the A859 across from Loch Cnoc a' Choilich and south of the existing Marybank Quarry and Mccaulay Farm & College. Western Isles Council are the local authority also known as Comhairle nan Eilean Siar.	Bing Maps
Land use	Macaulay Farm and College, a special needs educational centre offering courses from animal husbandry to construction is adjacent to the greenfield site, with grazing livestock nearby. There are some trees that are intended to be retained. Currently, the land is vacant with a peat bog throughout.	NLS Maps, Bing Maps, Ordnance Survey
Existing Drainage	There is a natural drainage system, within the greenfield area of the site. There may be some existing drainage present within Macaulay Farm which should be kept maintained throughout the works. At this time, there is insufficient GI to assess exact details of existing drainage networks. There are two main watercourses that cross the width of the site, shown in Figure 2.2. There are some field drains that cross the site, which will need to be diverted. The eastern boundary of the site is approximately 70m from the River Creed. A search of the available Scottish Water records for existing sewers and water mains identified an existing combined sewer in the A859.	Scottish Water records. Bing Maps, Macaulay Farm College Website.
Topography	Existing topography for the Arnish Moor site can be viewed on Figure 2.1. The ground slopes from the southwest with high ground of 62 mAOD at Laydown Area 2 and higher ground sloping down towards the site. The rest of the land varies with gentle slopes of 40-60 mAOD, with basin locations of 50m AOD. The ground across Laydown Area 3, the substation and convertor station slope down to Arnish Road and the River Creed. Along the east side of the A859 the land slopes northeast gradually. Around the connection point to the A859 from eastern access road the level is approximately 60 mAOD, the western access road and Arnish Road is 39 mAOD. The converter station and substation are 56m AOD and 58 mAOD respectively.	Cyberhawk Topographcal Survey
Soil Conditions and Geology	Studies have shown bedrock to be Outer Hebrides Thrust Zone Mylonites Complex Protocataclasite and	-LT14 Western Isles – Geotechnical and

Table 2.1:	Summary	of Existing	Conditions
------------	---------	-------------	------------

Conditions	Description	Source of data
	Lewisian Complex-Gneiss, with a fault line down the middle of the site, shown in Figure 2.5 and the British Geology Survey (BGS) viewer. Also, peat probing has recorded depths of 0.5-4m across the site, with the majority, > 1m. Ground investigation is limited, with further geotechnical records currently being compiled.	Geoenvironmental Preliminary Desk Study. -Peat Probing Factual Report 100109647 109647-MMD-00XX- RP-GE-0002 B.
Ground Permeability	The site is considered low permeability, though with a high ground water table in its current greenfield blanket bog form, infiltration drainage systems such as soakaways would not normally be considered suitable.	Peat Probing Factual Report 100109647 109647-MMD-00XX- RP-GE-0002 B.
Groundwater Levels and Drinking Water Protected Areas	As the Isle of Lewis lies within the Western Isles ground water drinking protected area but not SEPA's surface water drinking water protection area. Measures to protect groundwaters during construction shall be put in place with SEPA. SEPA's long term flood maps indicate low risk of flooding from ground water sources.	British Geological Survey (BGS) andSEPA Drinking Water Protection Areas Maps.
Land Contamination/Geohazards	The risk of contamination is unknown, further geotechnical study is ongoing.	Peat Probing Factual Report 100109647 109647-MMD-00XX- RP-GE-0002 B
Watercourses and Drainage features	There are 2 main land drains that cross the site, north & south to the River Creed, a watercourse to the east of the proposed converter station and substation. The Creed flows north to south. The land drains' source is Loch Cnoc a Choilich, across the A859 south-west of the site. The converter station and substation sites are constrained by the land drains and River Creed to the northeast.	
Flood Risk	A Level 3 Flood Risk Assessment (FRA) with 2D hydraulic analyses based on FEH reFH2 has been carried out including TUFLOW modelling and concluded minimal flood risk to the site. The extent of flooding of the 2 watercourses is unknown and more detailed assessment is required. There are no records of historical flooding of the site. SEPA's flood maps showed that the long-term flooding of the site is: Medium level risk from surface water flooding indicated by historic flood events, shown in Figure 2.7. SEPA's surface water flood map in the northern most extremity shows Loch Cnoc a Choilich has potential to flood with a low probability factor. No river or coastal flooding has been identified. The proposed converter station and substation are located outside of the floodplain of the River Creed. There is a low potential risk of flooding by a reservoir approximately 4km upstream of the River Creed in a very extreme event, as covered by the Flood Risk Assessment.	Arnish Moor Site Level 3 Flood Risk Assessment
Potable Water Mains	The nearest distribution main, feeding from Marybank tank, is a 180mm main in the A859, with a branch close to Macaulay farm which is a scour, there is also a 125mm main in Arnish Road. It is understood that	Scottish Water Records

Conditions	Description	Source of data
	the main in Arnish Road is in the process of being replaced.	
Sewers	There are Scottish Water sewers, a 90mm PE pipe assumed to be a rising main adjacent to the access road junction and a combined 200mm DI pipe, shown in Figure 2.4, further north along the A859.	Scottish Water Records

Figure 2-1: Existing Topography of Arnish Moor Site

Source: Mott MacDonald & https://en-gb.topographic-map.com (2024)

Figure 2-2: Existing Drainage of Arnish Moor Site

Source: Mott MacDonald LT14 - LEWIS - DIA FRA Support Email 13/08.24

Figure 2-3: Arnish Moor Scottish Potable Water Assets

Source: Scottish Water Records, scotwater_20240813_113516_252430.

Figure 2-4: Scottish Water Foul Water Assets

Source: Scottish Water Records Drawing scotwater_20240813_114121_876899.

Source: Extract from BGS GeoIndex Onshore Viewer. Contains British Geological Survey materials © UKRI [2024].

Figure 2-6: Flood Map for 0.1% AEP (1 in 1000yr) with Climate Change Allowance

Source: LT14 Western Isles HVDC-Arnish Moor FRA Level 3Flood Risk Assessment Report by Mott MacDonald.

3 Foul Water Drainage Strategy

3.1 Developed Sites

3.1.1 Proposed Solution

There will be welfare facilities within the converter station and substation buildings, therefore permanent foul sewerage is required.

SSE's hierarchy for the disposal of foul flows in SP-NET-CIV-502 is as follows:

'With reference to SEPA Guidance WAT-RM-03, where a connection to an existing sewer is not feasible an appropriate treatment and discharge system shall be provided to comply with CAR license requirements and the associated SEPA guidance in WAT-RM-03.'

Three potentially feasible options have been identified as summarised below.

- Option 1: The first consideration and preferred of the available options, is to convey the foul flows to an existing sewer. The nearest Scottish Water foul sewer to connect to is approximately 500m to the northwest of the site adjacent to A859. Due to the site topography, a gravity sewer connection is not feasible and pumping would be required. This would require a pumping station within the site being maintained by SSE, along with a rising main and sewer offsite adjacent to the A859.
- 2. Option 2: An alternative option, with reference to SEPA Guidance WAT-RM-03, if the technical issues of designing and operating a pumping system for such low flows are such that Option 1 is unfeasible, would be to provide an appropriate package sewerage treatment plant and discharge system, suitable for a population equivalent of 1-2 persons. The most likely outfall for this would be the southern watercourse. This treatment system would be maintained by SSE.
- 3. Option 3: The third potential option is a septic tank discharging through a mounded soakaway, designed to BR 478, Mound Filter Systems for the treatment of domestic wastewater. This could be formed at an area of the site such as Laydown adjacent to the HVDC platform. The natural percolation rates may be out with those suggested within BR 478, Mound Filter Systems for the treatment of domestic wastewater, however as there are up to 3 metres of imported fill, appropriate percolation may be achievable. A traditional soakaway through a field drainage system is not considered appropriate due to the ground conditions.

With regard to Option 1, informal discussions with Scottish Water have primarily indicated that the most appropriate connection is the gravity feed to Creed Pumping Station. This would involve construction adjacent to the rising main/sewer adjacent to the A859, see Figure 2.4 for the assumed connection point and Figure 3-1 for the route of the new rising main and sewer. Scottish Water also indicated that there was a potential connection point in the Business Park to the south of the site but this has been discounted due to the distance from the site and the topography.

Figure 3-1: Additional land for sewer connection

Source: OpenStreet Maps

The Creed Pumping Setation is further downstream and once foul flows from the development are conveyed into the existing pumping station, they will be pumped north to Scottish Water's sewerage system in Stornoway.

The anticipated foul flows from the substation and converter station sites are expected to be low and infrequent. Consequently, implementing a flushing system may be required to reduce the risk of septicity occurring during periods of low usage.

The proposed pumping stations will be provided with a minimum of 24 hours emergency storage.

3.1.2 Foul Water Units

The assumed facilities provided within the converter station and substation are summarised in Table 3.1 below. The discharge units of the proposed facilities have been extracted from BS EN 12056-2:2000 Table 2.

Converter Station / Substation	Facility Type	Number	Discharge Units (I/s)	Σ Discharge Units (I/s)
	WC with 9 litre cistern	2	2.5	5.0
Converter Station	Wash hand basin	2	0.5	1.0
	Kitchen sink	1	1.3	1.3
Substation	WC with 9 litre cistern	4	2.0	8
	Wash hand basin	4	0.5	2
	Kitchen sink	2	1.3	2.6
			Total:	19.9

Table 3.1: Summary of Foul Water Units

Source: Discharge units extracted from BS EN 12056-2:2000 Table 2

The peak foul water flow rate can be calculated using the discharge unit method in accordance with BS EN 12056-2 Section 6.3.1. The proposed design flow associated with the above facilities is Q = k * (DU)1/2.

Where:

k = 0.5 (frequency factor for occasional use).

DU = Total discharge units.

The total number of discharge units for both the converter station and substation is 19.9l/s. Therefore, the peak foul water flow rate from both sites has been calculated as 2.2l/s¹

3.2 Construction Phase

For the temporary construction compounds of both the converter station and substation sites, effluent from site accommodation will be collected in a septic holding tank and removed from site as controlled waste. The foul effluent shall be removed from site by licensed waste disposal companies and the effluent shall be taken to a fully recognised and licensed sewage treatment works.

¹ It is noted that Scottish Water tend to use a different methodology for estimating peak flows. The connection application to Scottish Water is likely to be based on a lower value than this.

4 Surface Water Drainage Strategy

4.1 Design Guidance and Policy

The proposed surface water drainage design is indicated in the next drawings:

- Surface water permanent drainage layout: 109647-MMD-ARNI-XX-DR-CE-0003
- Surface water temporary water layout: 109647-MMD-ARNI-XX-DR-CE-0004

A standard drainage strategy report and technical note have been produced by Tony Gee on behalf of SSEN and MML, the according data for Arnish has been referenced below.

- SSEN-ASTI-HVDC Standardisation Drainage Strategy, ASTIDC-STAN-MMD-DRAI-INFR-RPT-C-0004 Rev P04, Tony Gee prepared for SSEN/MML
- SSEN-ASTI Drainage Split Network Technical Note, ASTIDC-STAN-MMD_XX_XX_TN_C_0002 Rev P01

The drainage strategy for the proposed development has been developed based on the following guidance:

- Flood and Water Management Act 2010²;
- The SuDS Manual (C753)³; and
- Sewers for Scotland 4th Edition
- Scottish Environmental Protection Agency (SEPA) Guidance, SEPA Silt Control Guidance.
- Environmental Standards for River Morphology (WAT-SG-21)⁴
- Engineering in Water Environment River Crossing (WAT-SG-25)⁵
- Engineering in the water environment good practice Sediment Management (WAT-SG-26)⁶
- Engineering in the water environment good practice Temporary Construction (WAT-SG-29)⁷
- SEPA Flood Risk and Controlled Activities Regulations⁸.
- Scottish Planning Policy (SPP, 2014)⁹;
- Planning Advice Note 61: Sustainable urban drainage systems
- Energy Networks Association ETR 138 Flood Resilience for Critical Infrastructure¹⁰

⁸ "The Water Environment (Controlled Activities) (Scotland) Regulations 2011, A Practical Guide" by SEPA <u>https://www.sepa.org.uk/media/34761/car_a_practical_guide.pdf</u>

² Flood and Water Management Act 2010 (2010). [Online]. https://www.legislation.gov.uk/ukpga/2010/29/introduction [Date Accessed: May 2022].

³ CIRIA, The SuDS Manual (2015). [Online]. Available at: <u>https://www.susdrain.org/resources/SuDS_Manual.html</u> [Date Accessed: May /2022].

⁴ SEPA supporting guidance: good practice guides WAT-SG-25 Engineering in Water Environment - River Crossing <u>https://www.sepa.org.uk/media/151036/wat-sg-25.pdf</u>

⁵ SEPA supporting guidance: good practice guides WAT-SG-25 Engineering in Water Environment - River Crossing <u>https://www.sepa.org.uk/media/151036/wat-sg-25.pdf</u>

⁶ SEPA supporting guidance: good practice guides WAT-SG-26 Engineering in Water Environment – Sediment Management <u>https://www.sepa.org.uk/media/151036/wat-sg-26.pdf</u>

⁷ SEPA supporting guidance: good practice guides WAT-SG-29 Engineering in Water Environment - Temporary Construction Methods <u>https://www.sepa.org.uk/media/151036/wat-sg-29.pdf</u>

⁹ "Scottish Planning Policy" by The Scottish Government, 2014, revised December 2020 <u>https://www.gov.scot/binaries/content/documents/govscot/publications/factsheet/2021/05/transport-scotland-core-documents/documents/policy/scottish-planning-policy-spp/scottish-planning-policy-spp/scottish-planning-policy-spp/scottish-planning-policy.pdf</u>

- SSEN Generic Electricity Substation Design Manual for Civil, Structural and Building Engineering:
 - SP-NET-CIV-501 Earthworks, Specification, SSEN, July 2020
 - SP-NET-CIV-502 Drainage Specification, SSEN, July 2020.
 - SP-NET-CIV-503 Pavements and Roadways Specification, SSEN, July 2019.
 - SP-NET-CIV-504 Ducting, Trenching and Trench Covers Specification, SSEN, June 2016.
 - SP-NET-CIV-509 Substation Bunds Specification, SSEN, July 2020.

The SSE specification SP-NET-CIV-502 indicates the "design" standards for the site are as follows:

- 1 in 200-year return period protection for operational areas;
- 1 in 1000-year return period protection for "critical infrastructure" as defined in SSE Specification and Planning Guidance;
- Off-site discharge at 1 in 2-year greenfield runoff rate and 1 in 200-year return period protection for off-site flooding.

4.1.1 Climate Change

SEPA defines allowances for the effects of climate change on peak rainfall intensities. The peak rainfall intensity allowances for each river basin region in accordance with SEPA requirements is 48% allowance of climate change.

It is worth noting that SSE specification SP-NET-CIV-502 states that a climate change allowance of 20% (by factoring the rainfall intensity hyetograph values) shall be applied to FEH rainfall data. A climate change allowance of 48% shall be considered for the surface water drainage design as per SEPA's requirements, embedding conservatism into the surface water drainage design. This climate change allowance value shall be applied to the 1 in 200-year return period, considering no flooding of the operational areas of the permanent converter station and substation platforms.

Similarly, a climate change allowance of 48% has also been applied to the design of the surface water drainage design for the temporary construction compounds. A climate change allowance may not be required for the temporary condition, however this is to be discussed and agreed with SEPA.

4.1.2 Disposal of Flows

It should be acknowledged that the satisfactory collection, control and discharge of storm water is a principal planning and design consideration.

The NPF4 states that for new developments, the best way of reducing flood risk within the development is to:

- Control the water at source through sustainable system (SuDS).
- Consider exceedance flow route when the capacity of the drainage system is exceeded.

SuDS should mimic natural drainage and reduce the amount and rate of water flow by:

- Infiltrating into the ground,
- Holding water in storage areas, and
- Slowing the flow of water.

The design will meet the following discharge hierarchy (with acceptable justification for moving between levels) by the CIRIA C753 SuDS manual:

- 1. Infiltration to the maximum extent that is practical –where it is safe and acceptable to do so.
- 2. Discharge to surface waters.
- 3. Discharge to surface water sewer.
- 4. Discharge to combined sewer (last resort).

It is necessary to identify the most appropriate method of controlling and discharging surface water from the site. Where possible, surface water run-off from the developed site will be drained in such a way as to mimic the natural drainage system and thereby implement a SuDS approach. The design should seek to improve the local run-off profile by using systems that can either attenuate run-off and reduce peak-flow rates or positively impact on the existing flood profile.

The assessment followed to design the runoff flows is in accordance with SSE specification SP-NET-CIV-502 which states that the preferred method of estimating the rainfall depth is to use the depth-duration-frequency rainfall model contained within the Flood Estimation Handbook (FEH).

Due to the high presence of peat, which is underlain by impermeable bedrock, the site is considered low permeability, though with a high ground water table in its current greenfield blanket bog form. Additionally, a shallow groundwater table has been assumed owing to the areas of standing water observed throughout the site. Therefore, in its current greenfield blanket bog form, infiltration drainage systems would not normally be considered suitable and in accordance with the discharge hierarchy specified within the SuDS manual, flows shall instead be attenuated and discharged into the nearest available watercourse. SUDs basins are sited in areas of shallow peat depth, as shown in Figure 4.1.

Figure 4-1 Peat zoning with proposed pond locations

Source: Peat Probing Factual Report 109647-MMD-00-XX-RP-GE-0002

However, it is recognised that constructing SuDS, including detention basins, within a peat covered site will require significant removal of peat. While this DIA illustrates a viable surface water drainage design can be accommodated on the site, adopting what is considered a worst case for peat management, 'the Proposed Development' is committed to reducing the impact of the development, including drainage, on the environment. As the design develops, the Project

will continue to refine the drainage design with the aim of minimising the environmental impact. Several novel approaches are being considered for within and out with the station confines, one of which includes forming low level surface bund arrays within the wider peat in order to diffuse surface runoff around the perimeter of the site and attenuate the drainage without removing the peat.

4.2 Proposed Surface Water Drainage Strategy: Developed Sites

Surface water runoffs from both the HVDC convertor station and AC substation site are to be conveyed and attenuated within detention basins north and south respectively of the substation and convertor station, refer to 109647-MMD-ARNI-XX-DR-CE-0003. The outflows shall be limited to the equivalent 1 in 2-year greenfield runoff rates for the respective catchments (Appendix B). The preference of SSEN, is via gravity, however where this is not possible a pumped solution may be used.

The outfall from the detention basins shall discharge into existing drainage ditches/watercourses then to the River Creed. Track access (pavements and roadways) for maintenance vehicles shall be provided to all outfalls. Headwalls shall be provided at all positions where a drainage system discharges into open water.

The entirety of the surface water runoff from the AC substation will be conveyed into a swale then detention basin located in the southeast side of the site. The flow from the HVDC converter station will be conveyed to a standardised single outfall, in the northeast corner of the station, into a detention basin in the northeast of the site.

A permanent swale shall be constructed to the south of the site to convey earthworks & building drainage. There are also natural constrictions to the swales, due to earthwork slopes, that would create a tiered effect and add further levels of treatment, settlement areas prior to entry to the basins will be provided.

In the southwest side of the site, by Laydown area 2 substation cables are planned to be located and therefore these areas shall be kept clear from during the installation of the cables only, a temporary drainage diversion will be required at this area of the site.

Kerbs and gullies are to be installed when required, with filter drains along both sides of the permanent access roads based on the camber, as specified in the standardised documents, to convey surface water runoff from the road. These should be maintained biannually and annually accordingly.

Figure 4-2 Typical detail of a swale

Source – The SUDs Manual, CIRIA C753

13 November 2024

Source – The SUDs Manual, CIRIA C753

Filter drains are also to be placed at the toe of cuttings to intercept surface water runoff landing directly on the embankments such as along the northwestern walls of the AC substation.

Where there is a potential risk of oily water, such as at transformers, an above ground oil interceptor shall be installed with a connection to the surface water system. Roads adjacent to oily water sites will drain flow through the interceptor. An operation and maintenance plan shall be prepared for all apparatus.

The drainage system within the site platform has not been developed at this stage however the drainage downstream of the Converter Station has been based on a standardised platform layout developed by SSEN. A pipe gradient of 1:200/1:300, falling from one end of the platform to the other has been assumed, with the dimensions shown in Table 4.1.

Drainage Corridor Dimension	Size
Max Corridor Depth/ Width (m)	5.5m
Convertor Station	3.0m
Surface/foul water max pipe diameter	1200mm
	300mm

Table 4.1: Drainage Corridor

Source: SSEN-ASTI-HVDC Standardisation Drainage Strategy, ASTIDC-STAN-MMD-DRAI-INFR-RPT-C-0004 Rev P04, Tony Gee prepared for SSEN/MML)

4.2.1 Permanent Works

The permanent works include the normal features of a converter station and substation: buildings, transformers, internal roads, car parks, earthworks and external access roads.

The AC substation and HVDC converter station design life is 40 years (20 years first life maintenance).

The permanent works include but are not limited to:

- Site platforms of the converter station and substation compounds are to be +55.5mAOD. The site platforms will be constructed from permeable granular stone to attenuate flows.
- Buildings of varying use. A significant proportion of the converter station site is formed of buildings, typically utilising a steel frame construction with cladded exterior, with a reduced number present within the substation site.
- 2 No. permanent access roads to facilitate access within the substation compound.

4.2.2 Proposed Permanent Development Areas

The proposed impermeable areas of the permanent HVDC converter station and AC substation sites are summarised in Table 4.2. The percentage of impermeable areas was calculated by analysing the hardstanding surfaces (Internal roads, bunds, buildings and embankments) against the total area of the site. Permeable areas comprised the remaining areas of the exposed free-draining granular stone of the platform.

Catchment Reference	Total Catchment Area (ha)	Percentage of Impermeable Area (%)	Total Impermeable Area (roads, roofs, transformers bunds) (ha)
AC Substation	6.36	47	2.99
HVDC Converter Station	8.59	57	4.90
Permanent Access Road East	0.39	100	0.39
Permanent Access Road West	0.31	100	0.31

Table 4.2: Summary of Permanent Impermeable Areas

4.2.3 Pre-Development Runoff Rates for Permanent Structures

The greenfield runoff rates have been calculated using the online 'HR Wallingford tool' which follows the IH124 method. Appendix B contains the greenfield runoff rate for each permanent catchment area.

The contributing area, shown in **Table 4.3**, of each site considers the gross area of all catchments of the new development: new embankments, platforms, access roads; all works affected by the new converter station and substation.

Table 4.3: Permanent Catchment Pre-Development Runoff Rates

Catchment Area Reference	Contributing Area (ha)	QBAR (I/s)	1 in 2-year (I/s)	1 in 30-year (I/s)	1 in 200-year (l/s)
AC Substation	6.36	107	96	209	304
HVDC Converter Station	8.59	128	116	251	365

Pre-Development Runoff Rates

*Eastern catchment of the permanent access road to discharge at a rate of 5l/s to prevent blockages to the flow control device.

Source: "Greenfield runoff rate estimation for sites" from HR Wallingford, www.uksuds.com

4.3 Proposed Surface Water Drainage Strategy: Construction Phase

As shown in 109647-MMD-00-XX-DR-CE-0003 & 0004, surface water runoff from the temporary construction compounds, laydown areas are to be conveyed into the north and south watercourses via temporary swales which will then be backfilled. Outflows of the widened swales shall be limited to the equivalent 1 in 2-year greenfield runoff rates.

Perimeter swales covering the temporary compounds have been proposed to:

- 1. Intercept overland flows from the areas of higher ground located outside of the proposed development and to;
- 2. Capture any earthworks flows from embankments or at toe or cuttings
- 3. Contain any surface water runoff of the temporary and permanent compounds, therefore preventing any potential pollutants, including silts and fines, entering the surrounding watercourses during the construction stage (Refer to Section 5.2).

The swales to the south of the convertor station and substation will remain to convey the substation land and earthwork drainage.

Temporary drainage is required during the construction of the AC substation and HVDC converter station platforms. Due to the natural topography the swale is not a continual length but with constrictions. In addition to the perimeter swales, settlement lagoons have been proposed to attenuate surface water runoff and collect the volumes of silts/fines transported by the runoff during construction, as shown in next Figure. The settlement lagoons will partly be formed naturally along the length of the swale following the natural topography. The settlement lagoons will outfall into the nearest available watercourse with discharge rates being limited to the equivalent 1 in 2-year greenfield runoff rates shown in Table 4.3.

Figure 4-4 Typical detail of a detention basin with a forebay or settlement lagoon.

Source - The SUDs Manual, CIRIA C753.

The temporary settlement lagoons shall be extended and compartmentalised on site by the contractor as necessary to meet water quality standards through settlement and, if required, dosing. Once the platforms of the substation and converter station sites have been constructed, the settlement lagoons shall be modified and utilised as detention basins for the permanent drainage design.

4.3.1 Temporary Features

The temporary features of the proposed construction compounds include but are not limited to:

- Welfare facilities
- Internal roads
- Laydown/storage areas
- Vehicle/plant parking.
- Borrow Areas

Drainage will be constructed to prevent surface water runoff from entering the borrow pit from the adjoining land. Runoff from adjoining land shall be captured (in a perimeter gravel-filled drainage ditch, shallow v-ditch or similar) upslope of the borrow pit footprint. These waters shall then be directed (again via gravel-filled drainage ditch or shallow v-ditch) to a soakaway trench constructed on the downslope side of the borrow pit; or if a watercourse is downslope side of the borrow pit via dispersion sheet. Rainfall landing within the pit, and any groundwater collected within it, shall be directed towards the main headwall and collected in a sump. This water will then be directed, either via pump or by gravity drainage, to a series of settlement management ponds and/ or structures. These in turn will then discharge to soakaway trenches on the downslope side of the borrow pit. After the completion of the Construction phase, the borrow areas will be restored with new final land contours (similar to the pre-development contours/natural contours).

4.3.2 Proposed Temporary Development Areas

The proposed impermeable areas of the temporary HVDC converter station and AC substation construction compounds are highlighted within Table 4.4. The percentage of impermeable area also accounts for the embankments outside of the compound working areas.

Catchment Reference	Total Catchment Area (ha)	Percentage of Impermeable Area (%)	Total Impermeable Area (ha)
Laydown Area 2	4	50	2
Laydown Area 3	2.05	50	1.0

Table 4.4: Summary of Temporary Impermeable Areas

4.3.3 **Pre-Development Runoff Rates for Temporary Structures**

The greenfield runoff rate has been calculated using the online 'HR Wallingford tool' which follows the IH124 method. Appendix B contains the greenfield runoff rate for each temporary catchment area.

The contributing area, shown in **Table 4.5**, of each site considers the gross area of all catchments of the proposed temporary construction compounds: internal roads, laydown areas, car parking and welfare facilities.

Pre-Development Runoff Rates					
Catchment Area Reference	Contributing Area (ha)	QBAR (I/s)	1 in 2-year (l/s)	1 in 30-year (l/s)	1 in 200-year (I/s)
Laydown Area 2	4.41	57	56.7	110	161
Laydown Area 3	1.78	23	22.9	45	65

Table 4.5: Temporary Catchment Pre-Development Runoff Rates

Source: "Greenfield runoff rate estimation for sites" from HR Wallingford, www.uksuds.com. Appendix B

4.4 Post-Development Discharge Rates and Proposed Attenuation Volume

Surface water run-off discharging from the development sites into the existing nearby watercourses shall be restricted to an appropriate discharge rate. As noted previously, a significant proportion of the site is currently undeveloped, therefore, in line with local and national guidelines, the flow restriction from the developed site shall be based on the estimated equivalent 1 in 2-year greenfield run-off rate for the undeveloped site.

The proposed discharge rates vary per catchment area; however, they shall be controlled by a suitable flow control device such as a Hydrobrake manhole or an orifice control at the attenuation basin outlet. The diameter of the chosen flow control device shall be set to achieve the desired outfall discharge rate for the catchment area served. To avoid blockage of the flow control device, the advisable minimum discharge rate is 5l/s.

The proposed permanent attenuation volume, shown in **Table 4.6**, would be provided onsite within the network of pipes (to be done by others) and outside the converter station and substation compounds via two detention basins. The required attenuation volumes for the two proposed detention basins are 4200 and 2000 m³ to protect the site against the 1 in 200 year + cc event and critical equipment from the 1 in 1000 year + cc even whilst limiting discharge to greenfield runoff. The basins may reduce in size once the drainage design is complete and consideration is given to the attenuation volume provided by the onsite drainage system (swales, filter drains etc).

The permanent detention basins will be vegetated, non-permeable geo-textile lined with an inlet forebay. This will provide treatment of the runoff by allowing for settlement of silts, heavy metals and the removal of oxygen demanding material.

Table 4.6: Post-Develop	ment Discharg	e Rates
-------------------------	---------------	---------

Catchment Area Reference	Proposed Discharge Rate (1 in 2-year Greenfield Runoff Rate) (I/s)	Proposed Attenuation Volume (m ³)
AC Substation	96.4	4200
HVDC Converter Station	115.6	2000

4.5 Exceedance Events

The proposed development will locally increase ground levels around the site boundary due to the requirement of constructing flat platforms for the converter station and substation. Any exceedance flow that could occur when rainfall exceeds the 1 in 200-year + 48% climate change allowance will be delivered to the proposed detention basins and permeable platforms. During time where the system may flood due to very large storm events, all excess water that cannot be contained within the permeable platform or SUDs features (basins) should be

maintained within suitable exceedance areas and routes. These routes should direct flow towards the two watercourses.

4.6 Hydraulic Modelling: Convertor Detention Basin (AT-01)

The following parameters in Table 4.7 have been used in the hydraulic design and simulation using MicroDrainage modelling software.

Table 4.7: Hydraulic Modelling Parameters

Criteria	Parameter
Rainfall	
Rainfall Method	FEH /Modified Rational Method
Design Rainfall	FEH 2022- Point Rainfall
	GB 140358 931952 NB 40358 31952
Simulation Criteria	
Cv (Summer)	0.750
Cv (Winter)	1.000
Time of Concentration	5mins
Return Periods	
	1:2
Permanent Catchment	1:200 +48%
	1:1000 +48%
Percentage of Impervious (PIMP)	
Converter Station	57%
Substation	47%
Permanent Road-West	100%
Permanent Road-East	100%
Cut/Fill Slopes	21%
Laydown Area 2	50%
Laydown Area 3	50%
Catchment Areas	
Converter Station	8.59ha
Substation	6.36ha
Permanent Road-West	0.31ha
Permanent Road-East	0.39ha
Cut/Fill Slopes	3.56ha
Laydown Area 2	4ha
Laydown Area 3	2ha
Net Area	25.21ha
Detention Basin Structure – AT01	
Volume (m3)	4625.3
Flow Control Device	Hydro-Brake
Design Flow (I/s)	105.00
Discharge Point	Outfall into North Watercourse

Criteria	Parameter	
Detention Basin Structure – AT02		
Volume (m3)	2472.2	
Flow Control Device	Hydro-Brake	
Design Flow (I/s)	96.43	
Discharge Point	Outfall into South Watercourse	

5 Water Quality Control

The proposed development provides a risk of water pollutants both during the temporary (construction) and permanent (operational) stages. SuDS features can be used to provide treatment to surface water runoff to prevent pollution of the receiving watercourses.

5.1 Developed Site Water Pollution Hazards

The following areas provide a risk of water pollution during the operational stage of the proposed development:

- External access road leading to the substation and converter station sites.
- Embankments of the converter station and substation platforms.
- Permanent drainage systems on the substation and converter station site.

The water quality control measures implemented within the internal substation and converter station drainage systems are as follows for the standardised HVDC platform design and AC Substation. Filter drains will be provided wherever feasible for surface water runoff but water quality will be mitigated 'off platform' in the attenuation basin described in this document. Oily water will be treated through above ground filters fed by oil discerning sump pumps and will also be directed to the attenuation basin. This satisfies the requirements for water quality as identified using the Simple Index method described in the SUDS manual (see appendix C).

The permanent or operational drainage system is designed to meet the water quality criteria and best practice pollution control measures set out in the CIRIA SuDS Manual. The site is categorized by appropriate pollution hazard level from Table 26.15 and Table 26.2 of the SuDS Manual. As an initial check, the Simple Index Approach, seen in Appendix C, has been applied to confirm the pollution risks are mitigated sufficiently as recommended in Section 26.7.1 'Water Quality Management: Design Methods' of the SuDS Manual.

5.1.1 Operational Phase Substation and Converter Station Site

The proposed surface water drainage system will improve the water quality of surface water runoff from the proposed development, which will ultimately outfall to existing watercourses.

This will be done by using a treatment chain where each subsequent system within the proposed drainage network provides treatment to improve water quality.

The proposed surface water treatment method will depend on the potential hazards on the site and the sensitivity of the receiving water body to pollution.

In line with the SP-NET-CIV-509 and the 502, all transformers will have a totally sealed bund with a sump which has a water control unit to pump any water out. This will be directed through an above ground oil separator to pick up any potential small levels of residual oil before being discharged into the main operational platform drainage system.

Access roads will drain into a filter drain system or the permeable platform; this will provide an adequate level of water quality treatment.

A penstock valve shall be installed at each outfall, with sampling points incorporated downstream of the swale or basin prior to discharge entering the water environment. Each new outfall to existing watercourses will require a discharge consent, to be agreed with SEPA and the Local Flood Authority, Western Isles Council.

5.1.2 External Access Road

The external access road leading to the proposed converter station and substation sites will be occasionally used by staff and visitors and has therefore been considered as a very low trafficked area. Subsequently, it has been assumed that there will be no significant discharge of potential pollutants from this area.

Filter drains have been proposed either side of the permanent access road to intercept overland flows and prevent surface water runoff from the road directly entering the surrounding watercourses without treatment. The surface water runoff from the external access road shall pass through the filter drains, into swales and outfall to the north and south watercourses respectively, providing an appropriate level of treatment. As indicated in Table 26.15 from the SuDS Manual, filter drains are particularly effective at removing the main pollutants in runoff such as suspended solids, hydrocarbons and metals.

5.1.3 Embankments of the Converter Station & Substation Platforms

The embankments of the permanent site platforms provide a risk of pollution via the potential transportation of silt/fines as a result of rainfall landing directly on them. This risk shall be mitigated through:

- Filter drains at the toe of cutting slopes within the converter station and AC substation and;
- Swales at the toe of filling slopes outside of the converter station and AC substation fencing.

As stated in Section 5.1.2, filter drains are effective at removing suspended solids. Furthermore, check dams shall be installed within the swales to slow the water velocity within the swale, reducing erosion and encouraging silts/fines to settle. The check dams also provide a barrier, preventing the soil particles travelling through the permanent drainage network and entering the receiving watercourses.

5.1.4 Discharging Water into a River

To avoid existing waterbodies becoming contaminated by suspended sediments, the velocity of flows at the outfall should be reduced using baffles, blocks in the outfall apron or an energydissipater. The same consideration should be taken when over-pumping water along a watercourse.

Penstock valves will be installed to close or isolate the outfall in the event of a pollution incident.

5.2 Construction Phase Water Pollutant Hazards

During the construction stage, risks of water pollutants are present during:

- 1. The construction of the permanent substation and converter station platforms and;
- 2. The operations of the temporary construction compounds.

The following risks are provided during the above activities:

- Surface water runoff transporting silts and other fine particles to the surrounding watercourses.
- The potential spillage of fuel when refuelling plant, creating areas of contaminated land and watercourse pollution.
- Waste materials could contaminate the surrounding ground and watercourses, causing significant harm to the natural environment.

The objectives of the surface water management plan when considering the construction of the permanent substation and convertor station are to maintain the current water environment, ensure SEPA are satisfied water quality standards are met, maintenance of all mitigation measures, water flowing out of the site is not contaminated with oil.

To ensure pollution is minimised during construction best practice guidance and the General Binding Rules (GBRs) will be followed. A construction site license will be applied for prior to construction commencing outlining all pollution prevention measures. Such measures include attenuation, swales, check dams and silt management techniques ie silt fences, further detailed below.

To prevent contamination of the water network from mud on vehicles and areas under construction, temporary basins will be constructed which will fully be made permanent at a later stage in the construction process. This will be detailed in the Surface and Foul Water Management Plan and is shown on Drawings 109647-MMD-ARNI-XX-DR-CE-0003 to -0004.

For construction phasing activities and temporary silt mitigation measures, refer to the Construction Environmental Management Plan.

5.2.1 Transportation of Silts and Fines

The potential pollution of the surrounding watercourse caused by silts and other fine particles during the construction phase shall be mitigated through the use of:

- Perimeter swales with check dams installed;
- Settlement lagoons with an appropriately sized settlement bay to remove the silts/fines generated during construction and;
- Widened swales with forebays to remove silts/fines located to the south of the temporary construction compounds.

Surface water runoff from the temporary and permanent platforms will enter the perimeter swales and undergo a basic level of treatment via removal of any silts/fines. Where ground elevations permit, the settlement lagoons will act as an intermediate element between the perimeter swales and the proposed discharge points, therefore providing an additional level of treatment to surface water runoff.

The settlement lagoons are to be extended and compartmentalised on site by the Contractor as necessary to meet water quality control standards through settlement and, if required, dosing.

5.2.2 Spillage of Hazardous Substances

The prevention of fuel spillages shall be managed on site by the Contractor. It is advised that refuelling or handling of other hazardous substances shall take place within a water-tight bunded area located as far as practicably possible from the nearest watercourse. Spill kits shall be present on site and it is assumed that correct spill procedures shall be in place and managed by the competent Contractor on site.

5.2.3 Waste Materials

Waste materials shall be segregated and effectively managed on site. All waste material storage areas shall be located as far as practicably possible from the nearest watercourse.

5.3 Water Quality Design Criteria

The drainage systems on site will be designed to meet the water quality design criteria and good practice pollution control measures as outlined in the CIRIA SuDS manual. The different areas of the site will be categorised by the appropriate pollution hazard level from Table 26.2 of The SuDS Manual. As an initial check, the Simple Index Approach has been applied to confirm the pollution risks are mitigated sufficiently as recommended in Section 26.7.1 "Water quality management: design methods" of The SuDS Manual.

For the operational phase, the SuDS components stated above are proposed to provide sufficient pollution mitigation – refer to Appendix C.

6 Conclusions

This outline drainage strategy has concluded as follows, subject to further development and consultation with key stakeholders:

- A permanent foul water network is required to accommodate the proposed welfare facilities at both the substation and converter station sites, connecting to the existing Scottish Water network along the A859. The preferred solution for the permanent foul water network, foresees connecting into an existing combined sewer, owned and maintained by Scottish Water, through a series of pumped and gravity connections. The proposed connection point is into an existing manhole 1201 located to the west of the A859. If this solution is unfeasible due to technical issues, other options are provided in Section 3.1.1
- Effluent from temporary site accommodation will be collected within a septic holding tank and removed from site as controlled waste. The foul effluent shall be removed from site by licensed waste disposal companies and the effluent shall be taken to a fully recognised and licensed sewage treatment works.
- Tributaries of the River Creed are the most suitable receptor for surface water discharge from the proposed Arnish Moor substation and converter station sites.
- In the permanent stage, surface water runoff from the impermeable surfaces such as rooftops of the substation and converter station sites are to be conveyed to permanent open channels/swales that then widen into detention basins with settlement lagoons prior to discharging into the nearest available watercourse at the equivalent 1 in 2-year greenfield runoff rate. Sampling points shall be incorporated downstream of the swale or basin prior to discharge entering the water environment.
- Adjacent higher ground flows will be collected in the permanent open channels/swales. The collected flows will be discharged into the nearest available watercourse with no restriction to flow.
- In the construction stage, temporary swales that will be later backfilled and settlement lagoons are to be utilised to attenuate surface water runoff and remove silts/fines prior to discharging into the nearest available watercourse at the equivalent 1 in 2-year greenfield runoff rate.
- Access roads shall be drained via kerbs and gullies or CKD units where appropriate, out falling into the permanent swales then nearest available watercourse at the equivalent 1 in 2-year greenfield runoff rate. Sampling points shall be incorporated downstream of the roads prior to discharge into the river.
- The proposed drainage system has been designed to accommodate a 1 in 200-year return period and 48% climate change without surface flooding. A preliminary check of the 1 in 1000 (plus climate change event) year event has also been undertaken and critical equipment is suitably protected. The estimated required attenuation volumes for the two proposed detention basins are 4200m3 and 2000m3 approximately, whilst limiting discharge to greenfield runoff. It is envisaged that forming these basins will require significant removal of peat therefore further modelling will be undertaken as the design develops to refine these volumes with the aim of minimising the environmental impact.
- Discharge consents affecting the existing watercourses shall be agreed with SEPA and the Local Flood Authority, Western Isles Council.

Appendices

- Appendix A Greenfield Runoff Calculations
- Appendix B Attenuation Volume Calculations
- Appendix C Water Quality Simple Index Approach
A. Greenfield Runoff Calculations

www.uksuds.com | Greenfield runoff tool

2638500466

Aug 30 2024 11:52

Calculated by: Euan Walker		Site Deta	ails
Site name:	Arnish Moor Substation	Latitude:	58.20018° N
Site location:	Arnish Moor	Longitude:	6.42078° W

This is an estimation of the greenfield runoff rates that are used to meet normal best practice Reference: criteria in line with Environment Agency guidance "Rainfall runoff management for developments", SC030219 (2013), the SuDS Manual C753 (Ciria, 2015) and the non-statutory standards for SuDS (Defra, 2015). This information on greenfield runoff rates may be the basis **Date:**

for setting consents for the drainage of surface water runoff from sites.

Runoff estimation	approach	IH124				
Site characteristi	cs		Notes			
Total site area (ha): 8.34			(1) Is Q _{BAR} < 2.0 I/s/ha?			
Methodology						
Q _{BAR} estimation method:	Calculate from S	PR and SAAR	When Q _{BAR} is < 2.0 l/s/ha then limiting discharge rates are set at 2.0 l/s/ha.			
SPR estimation method:	Calculate from S	OIL type				
Soil characteristic	CS _{Default}	Edited	(2) Are flow rates < 5.0 l/s?			
SOIL type:	5	5	Where flow rates are less than 5.0 1/2 concept			
HOST class:	N/A	N/A	for discharge is usually set at 5.0 l/s if blockage			
SPR/SPRHOST:	0.53	0.53	from vegetation and other materials is possible. Lower consent flow rates may be set where the			
Hydrological characteristics		- 1.	blockage risk is addressed by using appropriate			
	Default	Edited	drainage elements.			
SAAR (mm):	1233	1295				
Hydrological region:	1	1	(3) Is SPR/SPRHOST ≤ 0.3?			
Growth curve factor 1 year:	0.85	0.85	Where groundwater levels are low enough the			
Growth curve factor 30 years:	1.95	1.95	use of soakaways to avoid discharge offsite			
Growth curve factor 100 years:	2.48	2.48	surface water runoff.			
Growth curve factor 200 years:	2.84	2.84				

Q _{BAR} (I/s):	107.14	107.14
1 in 1 year (l/s):	91.07	91.07
1 in 30 years (l/s):	208.92	208.92
1 in 100 year (l/s):	265.71	265.71
1 in 200 years (l/s):	304.28	304.28

tool

5			www.uksuds.com Greenfield runo				
Calculated by:	Euan W	alker		Site Details			
Site name:	Arnish Statior	Moor Convertor		Latitude: 58.19			
Site location:	Arnish	Moor		Longitude:	6.41945° W		
This is an estimatior criteria in line with E developments", SC0 standards for SuDS for setting consents	n of the gre Invironmen 30219 (2013 (Defra, 2015 s for the dr	eenfield runoff rates t t Agency guidance "R) , the SuDS Manual C i). This information or ainage of surface wa	hat are used to n ainfall runoff man 753 (Ciria, 2015) ar greenfield runof ter runoff from si	neet normal best practice Reference: nagement for nd the non-statutory if rates may be the basis tes. Date:	4124721741 Aug 30 2024 11:46		
Runoff esti	matio	n approach	IH124				
Site charac	cterist	ics		Notes			
Total site area (h	10 a): ¹⁰			(1) Is Q _{BAB} < 2.0 l/s/ha?			
Methodolo	gy						
Q _{BAR} estimation r	method:	Calculate from S	SPR and SAAR	$_{\rm JSAAR}$ When Q _{BAR} is < 2.0 l/s/ha then limiting discharge rates are set at 2.0 l/s/ha.			
SPR estimation n	R estimation method: Calculate from SOIL type						
Soil charac	teristi	CS _{Default}	Edited	(2) Are flow rates < 5.0 l/s	s?		
SOIL type:		5	5		5.01/		
HOST class:		N/A	N/A	for discharge is usually set at 5.	0 l/s if blockage		
SPR/SPRHOST:		0.53	0.53	from vegetation and other mate	erials is possible.		
Hydrologica characteris	al stics	Default	Edited	blockage risk is addressed by us drainage elements.	sing appropriate		
SAAR (mm):		1293	1293				
Hydrological regi	ion:	1	1	(3) Is SPR/SPRHOST ≤ 0.3?			
Growth curve fac	ctor 1 yea	r. ^{0.85}	0.85	Where groundwater levels are lo	ow enough the		
Growth curve fac years:	ctor 30	1.95	1.95	use of soakaways to avoid disc	harge offsite		
Growth curve fac years:	ctor 100	2.48	2.48	would normally be preferred for disposal of surface water runoff.			
Growth curve fac years:	ctor 200	2.84	2.84				

Greenfield runoff rates

Default

Q _{BAR} (I/s):	128.47	128.47
1 in 1 year (l/s):	109.2	109.2
1 in 30 years (l/s):	250.51	250.51
1 in 100 year (l/s):	318.59	318.59
1 in 200 years (l/s):	364.84	364.84

www.uksuds.com | Greenfield runoff tool

1720343202

Aug 30 2024 12:00

Calculated by: Euan Walker		Site Deta	ails
Site name:	Arnish Moor Substation	Latitude:	58.19921° N
Site location:	Arnish Moor	Longitude:	6.42254° W

This is an estimation of the greenfield runoff rates that are used to meet normal best practice Reference: criteria in line with Environment Agency guidance "Rainfall runoff management for developments", SC030219 (2013), the SuDS Manual C753 (Ciria, 2015) and the non-statutory standards for SuDS (Defra, 2015). This information on greenfield runoff rates may be the basis **Date:**

for setting consents for the drainage of surface water runoff from sites.

Runoff estimation	n approach	IH124				
Site characteristi	CS	Notes				
Total site area (ha): ^{4.41}			(1) Is $\Omega_{mp} < 2.0 l/s/ba2$			
Methodology			(1) IS QBAR < 2.0 1/ 3/112			
Q _{BAR} estimation method:	Calculate from S	SPR and SAAR	When Q _{BAR} is < 2.0 l/s/ha then limiting discharge rates are set at 2.0 l/s/ha.			
SPR estimation method:	Calculate from S	SOIL type				
Soil characteristic	CS _{Default}	Edited	(2) Are flow rates < 5.0 l/s?			
SOIL type:	5	5	Where flow rates are less than 5.0 1/2 concept			
HOST class:	N/A	N/A	for discharge is usually set at 5.0 l/s if blockage			
SPR/SPRHOST:	0.53	0.53	from vegetation and other materials is possible. Lower consent flow rates may be set where the			
Hydrological characteristics			blockage risk is addressed by using appropriate			
	Default	Edited	drainage elements.			
SAAR (mm):	1293	1293				
Hydrological region:	1	1	(3) Is SPR/SPRHOST ≤ 0.3?			
Growth curve factor 1 year	0.85	0.85	Where groundwater levels are low enough the			
Growth curve factor 30 years:	1.95	1.95	use of soakaways to avoid discharge offsite			
Growth curve factor 100 years:	2.48	2.48	surface water runoff.			
Growth curve factor 200 years:	2.84	2.84				

Q _{BAR} (I/s):	56.65	56.65
1 in 1 year (I/s):	48.16	48.16
1 in 30 years (l/s):	110.47	110.47
1 in 100 year (I/s):	140.5	140.5
1 in 200 years (l/s):	160.9	160.9

www.uksuds.com | Greenfield runoff tool

4279862259

Aug 30 2024 12:03

Calculated by: Euan Walker		Site Deta	ails
Site name:	Arnish Moor Substation	Latitude:	58.19921° N
Site location:	Arnish Moor	Longitude:	6.42254° W

This is an estimation of the greenfield runoff rates that are used to meet normal best practice Reference: criteria in line with Environment Agency guidance "Rainfall runoff management for developments", SC030219 (2013), the SuDS Manual C753 (Ciria, 2015) and the non-statutory standards for SuDS (Defra, 2015). This information on greenfield runoff rates may be the basis **Date:**

for setting consents for the drainage of surface water runoff from sites.

Runoff estimation	n approach	IH124			
Site characteristi	ics		Notes		
Total site area (ha): 1.78			(1) Is Q _{BAR} < 2.0 I/s/ha?		
Methodology					
Q _{BAR} estimation method:	Calculate from S	SPR and SAAR	When Q _{BAR} is < 2.0 l/s/ha then limiting discharge rates are set at 2.0 l/s/ha.		
SPR estimation method:	Calculate from S	SOIL type			
Soil characteristi	CS _{Default}	Edited	(2) Are flow rates < 5.0 l/s?		
SOIL type:	5	5	Whore flow rates are less than 5.0.1/2 concept		
HOST class:	N/A	N/A	for discharge is usually set at 5.0 l/s if blockage		
SPR/SPRHOST:	0.53	0.53	 from vegetation and other materials is possible. Lower consent flow rates may be set where the blockage risk is addressed by using appropriate 		
Hydrological					
characteristics	Default	Edited	drainage elements.		
SAAR (mm):	1293	1293			
Hydrological region:	1	1	(3) Is SPR/SPRHOST ≤ 0.3?		
Growth curve factor 1 year	0.85	0.85	Where groundwater levels are low enough the		
Growth curve factor 30 years:	1.95	1.95	use of soakaways to avoid discharge offsite would normally be preferred for disposal of		
Growth curve factor 100 years:	2.48	2.48	surface water runoff.		
Growth curve factor 200 years:	2.84	2.84			

Q _{BAR} (I/s):	22.87	22.87
1 in 1 year (l/s):	19.44	19.44
1 in 30 years (l/s):	44.59	44.59
1 in 100 year (l/s):	56.71	56.71
1 in 200 years (l/s):	64.94	64.94

B. Attenuation Volume Calculations

Mott MacDonald Pvt Lt	d						Page 1
Unit No. 101, 1st Flo	or, Nom	•					
Hiranandani Garden, P	owai, M						
Maharashtrs, 400076	India						Micco
Date 9/12/2024 10:56	AM	Des	igned b	y NAI	10153	8	
File AT01 Pond.SRCX		Che	cked by	-			Digingda
Innovyze		Sou	rce Con	trol 2	2020.	1.3	
Summary o	f Results	for 2	00 year	Retu	rn Pe	eriod (+48%)	
			-				
	Storm	Max	Max	Max	Max	Status	
	Event	Level	Depth Co	ontrol	Volume	e	
		(m)	(m)	(1/s)	(m³)		
15	min Summer	50.186	0.286	72.0	1404.2	2 ОК	
30	min Summer	50.310	0.410	102.8	2032.2	2 ОК	
60	min Summer	50.466	0.566	104.9	2838.	бОК	
120	min Summer	50.527	0.627	104.9	3159.	S OK S OK	
240	min Summer	50.552	0.652	104.9	3288.	L OK	
360	min Summer	50.552	0.652	104.9	3286.3	3 ОК	
480	min Summer	50.545	0.645	104.9	3252.2	2 ОК	
600	min Summer	50.535	0.635	104.9	3199.	4 OK	
960	min Summer	50.523	0.595	104.9	2988.	7 OK	
1440	min Summer	50.436	0.536	104.9	2682.	7 ОК	
2160	min Summer	50.361	0.461	104.2	2290.	ОК	
2880	min Summer	50.305	0.405	102.6	2003.0	ОК	
4320	min Summer	50.244	0.344	93.4 82.0	1696.	1 OK	
15	min Winter	50.212	0.312	101.4	1866.	, ок 3 ок	
30	min Winter	50.446	0.546	104.9	2732.	3 ОК	
60	min Winter	50.657	0.757	104.9	3848.	в ок	
120	min Winter	50.745	0.845	107.7	4325.	6 OK	
100	min winter	50.780	0.000	109.9	4313.0	JUK	
5	Storm	Rain	Flooded	Discha	arge I	'ime-Peak	
I	Event	(mm/hr)	Volume	Volu	me	(mins)	
			(m³)	(m³)		
15 m	nin Summer	138.291	0.0	124	40.9	25	
30 n	min Summer	102.386	0.0	192	20.1	39	
60 r	nin Summer	73.216	0.0	29	54.3	68	
120 n 180 n	nin Summer	42.9/9	0.0	348	04.J 05.8	⊥∠4 182	
240 n	nin Summer	24.853	0.0	404	42.5	228	
360 r	nin Summer	17.992	0.0	43	95.3	286	
480 r	min Summer	14.278	0.0	46	53.6	348	
600 r	nin Summer	10 300	0.0	48	60.9 36 6	414 182	
960 r	nin Summer	8.174	0.0	532	27.7	616	
1440 r	nin Summer	5.914	0.0	57	65.7	876	
2160 m	nin Summer	4.308	0.0	643	33.8	1252	
2880 r	nin Summer	3.465	0.0	688	89.4 50 7	1596	
4320 r 5760 r	nin Summer	2.382	0.0	76	10.9	2296 3008	
15 n	nin Winter	138.291	0.0	17	12.5	25	
30 n	min Winter	102.386	0.0	263	17.6	39	
60 r	nin Winter	73.216	0.0	39	71.7	68	
120 r 180 r	u⊥n Winter min Winter	42.979	0.0	46	/8.2 06.7	⊥∠4 180	
			0.0	011	• ·	200	
	©1	1982-20	020 Inn	ovyze			

nit No. 101, 1st Floor, Nom iranandani Garden, Powai, M aharashtrs, 400076 India ate 9/12/2024 10:56 AM ile AT01 Pond.SRCX Designed by NAI101538 Checked by nnovyze Source Control 2020.1.3 Summary of Results for 200 year Return Period (+489 Source Control Volume (m) (m) (1/s) (m ³) 240 min Winter 50.793 0.893 110.6 4584.3 O K 360 min Winter 50.793 0.893 110.6 4584.3 O K 360 min Winter 50.793 0.893 110.6 4584.3 O K 360 min Winter 50.790 0.890 110.5 4572.2 O K 480 min Winter 50.776 0.875 109.6 4491.0 O K 600 min Winter 50.776 0.860 108.6 4406.0 O K 720 min Winter 50.761 0.841 107.5 4302.0 O K 966 min Winter 50.597 0.797 104.9 4063.9 O K 1440 min Winter 50.597 0.797 104.9 4063.9 O K 1440 min Winter 50.596 0.696 104.9 3520.3 O K 2800 min Winter 50.347 0.347 103.9 2221.2 O K 4320 min Winter 50.245 0.345 93.7 1701.7 O K 5760 min Winter 50.246 0.306 79.5 1503.0 O K 2400 min Winter 17.992 0.0 5893.0 342 480 min Winter 14.278 0.0 6237.4 386 600 min Winter 1.992 0.0 6513.9 462 720 min Winter 10.300 0.0 6748.0 540 960 min Winter 1.929 0.0 6513.9 462 720 min Winter 1.929 0.0 6631.9 462 720 min Winter 1.929 0.0 6631.9 462 720 min Winter 1.929 0.0 6631.9 462 720 min Winter 1.929 0.0 6633.9 462 720 min Winter 1.929 0.0 6633.9 462 720 min Winter 1.929 0.0 6633.9 462 720 min Winter 1.929 0.0 6237.4 386 600 min Winter 3.465 0.0 9216.4 1704 4320 min Winter 2.582 0.0 10250.1 2344	it No. 101, 1st Floor, Nom ranandani Garden, Powai, M harashtrs, 400076 India te 9/12/2024 10:56 AM Designed by NAI101538 le AT01 Pond.SRCX Checked by Checked by novyze Source Control 2020.1.3 Summary of Results for 200 year Return Period (+48 Storm Max Max Max Max Status Event Level Depth Control Volume (m) (m) (1/s) (m ³) 240 min Winter 50.793 0.893 110.6 4584.3 O K 360 min Winter 50.790 0.890 110.5 4572.2 O K 480 min Winter 50.790 0.890 110.5 4572.2 O K 480 min Winter 50.760 0.860 108.6 4406.0 O K 720 min Winter 50.741 0.841 107.5 4302.0 O K 960 min Winter 50.596 0.696 104.9 3520.3 O K 2160 min Winter 50.345 0.453 0.553 104.9 2767.0 O K 2160 min Winter 50.245 0.345 93.7 1701.7 O K 5760 min Winter 50.246 0.306 79.5 1503.0 O K 4320 min Winter 50.245 0.345 93.7 1701.7 O K 5760 min Winter 11.292 0.0 5893.0 342 480 min Winter 11.292 0.0 5893.0 342 480 min Winter 11.292 0.0 5893.0 342 480 min Winter 11.292 0.0 6237.4 386 600 min Winter 11.292 0.0 6313.9 462 720 min Winter 11.278 0.0 6237.4 386 600 min Winter 11.292 0.0 6513.9 462 720 min Winter 11.292 0.0 6313.9 462 720 min Winter 11.292 0.0 6513.9 462 720 min Winter 11.292 0.0 777.3 980 7140 min Winter 7.192 0.0 777.3 980 7160 min Winter 7.193 0.0 777.3 980 7160 min Winter 7.123 0.0 11364.3 3064	it No. 101, 1st Floor, Nom ranandani Garden, Powai, M harashtrs, 400076 India te 9/12/2024 10:56 AM le AT01 Pond.SRCX Checked by novyze Source Control 2020.1.3 Summary of Results for 200 year Return Period (+4 Storm Max Max Max Max Status Event Level Dept Control Volume (m) (m) (1/s) (m ³) 240 min Winter 50.793 0.893 110.6 4584.3 0 K 360 min Winter 50.795 0.890 110.5 4572.2 0 K 480 min Winter 50.796 0.890 110.5 4572.2 0 K 400 min Winter 50.796 0.860 108.6 4406.0 0 K 720 min Winter 50.796 0.860 108.6 4406.0 0 K 960 min Winter 50.741 0.841 107.5 4302.0 0 K 960 min Winter 50.743 0.553 104.9 2767.0 0 K 2160 min Winter 50.453 0.553 104.9 2767.0 0 K 2800 min Winter 50.245 0.336 3.2221.2 0 K 4320 min Winter 50.246 0.306 79.5 1503.0 0 K 5760 min Winter 50.206 0.306 79.5 1503.0 0 K 5760 min Winter 17.992 0.0 5893.0 342 480 min Winter 17.992 0.0 5893.0 342 480 min Winter 14.278 0.0 6237.4 386 600 min Winter 11.929 0.0 6513.9 462 720 min Winter 10.300 0.0 6748.0 540 960 min Winter 11.929 0.0 6513.9 462 720 min Winter 11.929 0.0 6513.9 462 720 min Winter 8.174 0.0 7135.9 692 1440 min Winter 8.174 0.0 7135.9 692 1440 min Winter 4.308 0.0 8603.8 1364 2860 min Winter 3.465 0.0 9216.4 1704 4320 min Winter 2.123 0.0 11364.3 3064	o. 101, 1st Floor, Nom ndani Garden, Powai, M shtrs, 400076 India /12/2024 10:56 AM Designed by NAI101538 TO1 Pond.SRCX Checked by ze Source Control 2020.1.3 Summary of Results for 200 year Return Period (+4 Storm Max Event Level Depth Control Volume (m) (m) (L/s) 240 min Winter 50.793 0.800 110.5 480 min Winter 50.775 0.800 110.5 480 min Winter 50.791 0.690 108.6 440 min Winter 50.791 0.690 104.9 960 min Winter 50.697 0.697 1979 104.9 4063.9 2160 mi Winter 50.347 0.447 103.9 220 K 4320 mi Winter 50.245 0.342 mi Winter 50.245 104.9 222.4 236 00 5760 mi Winter 11.292 0.0 533.0 <	MacDonald Pvt L	td						
iranandani Garden, Powai, M aharashtrs, 400076 India ate 9/12/2024 10:56 AM ile AT01 Pond.SRCX nnovyze Source Control 2020.1.3 Summary of Results for 200 year Return Period (+483 Storm Max Max Max Status Event Level Depth Control Volume (m) (m) (1/s) (m ³) 240 min Winter 50.793 0.893 110.6 4584.3 O K 360 min Winter 50.790 0.890 110.5 4572.2 O K 480 min Winter 50.760 0.860 108.6 4406.0 O K 720 min Winter 50.741 0.841 107.5 4302.0 O K 960 min Winter 50.591 0.797 104.9 4063.9 O K 1440 min Winter 50.593 0.797 104.9 4063.9 O K 1440 min Winter 50.593 0.553 104.9 2767.0 O K 2880 min Winter 50.347 0.447 103.9 2221.2 O K 4320 min Winter 50.245 0.345 93.7 1701.7 O K 5760 min Winter 50.206 0.306 79.5 1503.0 O K 2880 min Winter 17.992 0.0 5893.0 342 430 min Winter 11.929 0.0 6513.9 462 720 min Winter 12.582 0.0 10250.1 2344	ranandani Garden, Powai, M harashtrs, 400076 India te 9/12/2024 10:56 AM le AT01 Pond.SRCX novyze Source Control 2020.1.3 Summary of Results for 200 year Return Period (+48 Storm Event Max Max Max Max Max Status Event Cm) (m) (1/s) (m ³) 240 min Winter 50.793 0.893 110.6 4584.3 O K 360 min Winter 50.790 0.893 110.6 4594.3 O K 360 min Winter 50.797 109.6 4491.0 O K 600 min Winter 50.797 104.9 4063.9 O K 1440 min Winter 50.596 0.696 104.9 3520.3 O K 2160 min Winter 50.347 0.447 103.9 2221.2 O K 4320 min Winter 50.345 0.335 104.9 2767.0 O K 2800 min Winter 50.245 0.345 93.7 1701.7 O K 5760 min Winter 50.245 0.345 93.7 1701.7 O K 5760 min Winter 17.992 0.0 5893.0 342 480 min Winter 11.929 0.0 5513.9 462 720 min Winter 11.929 0.0 6513.9 462 720 min Winter 11.929 0.0 6513.9 462 720 min Winter 10.300 0.0 6748.0 540 960 min Winter 3.914 0.0 7727.3 980 2160 min Winter 3.914 0.0 7727.3 980 2160 min Winter 3.914 0.0 7727.3 980 2160 min Winter 2.582 0.0 10250.1 2344 5760 min Winter 2.582 0.0 10250.1 2344 5760 min Winter 2.123 0.0 11364.3 3064	ranandani Garden, Powai, M harashtrs, 400076 India te 9/12/2024 10:56 AM le AT01 Pond.SRCX Decked by novyze Source Control 2020.1.3 Summary of Results for 200 year Return Period (+4 Storm Max Max Max Max Status Event Depth Control Volume (m) (1/3) 240 min Winter 50.793 0.893 110.6 4584.3 O K 360 min Winter 50.795 0.895 110.6 4584.3 O K 360 min Winter 50.795 0.895 110.5 4572.2 O K 400 min Winter 50.795 0.895 110.6 4584.3 O K 360 min Winter 50.796 0.860 108.6 4496.0 O K 720 min Winter 50.775 0.875 109.6 4491.0 O K 600 min Winter 50.741 0.841 107.5 4302.0 O K 960 min Winter 50.741 0.841 107.5 4302.0 O K 1440 min Winter 50.453 0.553 104.9 2767.0 O K 2160 min Winter 50.453 0.553 104.9 2767.0 O K 2280 min Winter 50.245 0.345 93.7 710.7 O K 5760 min Winter 50.206 0.306 79.5 1503.0 O K 4320 min Winter 50.206 0.306 79.5 1503.0 O K 5760 min Winter 14.278 0.0 6237.4 366 600 min Winter 14.308 0.0 8603.8 1364 2800 min Winter 3.465 0.0 9216.4 1704 4320 min Winter 3.465 0.0 9216.4 1704 4320 min Winter 2.123 0.0 11364.3 3064	ndani Garden, Powai, M shtrs, 400076 India /12/2024 10:56 AM Designed by NAI101538 Checked by Source Control 2020.1.3 Source Control 2020.1.3 Storm Max Bevent Level Depth Control Volume (m) (1/s) (m³) 240 min Winter 50.793 0.893 Add min Winter 50.790 0.890 10.6 4584.3 O K 360 min Winter 50.790 0.890 10.6 4584.3 O K 400 min Winter 50.790 0.893 110.6 4584.3 O K 360 min Winter 50.790 0.893 10.6 4491.0 K 400 min Winter 50.790 0.890 10.6 4491.0 K 600 min Winter 50.797 10.49 10.6 4491.0 K 200 min Winter 50.697 0.977 104.9 4063.9 K 240 min Winter 50.496 0.696 104.9 3520.3 O K 240 min Winter 50.497 0.447 1039 2221.2 K 2800 min Winter 50.347 0.447 1039 2221.2 K 2800 min Winter 50.347 0.447 1039 2221.2 K 240 min Winter 24.853 0.0 5422.4 236 <	No. 101, 1st Fl	oor, Nom	•					
aharashtrs, 400076 India ate 9/12/2024 10:56 AM Designed by NAI101538 ile AT01 Pond.SRCX Checked by nnovyze Source Control 2020.1.3 Source Control 2020.1.3 Summary of Results for 200 year Return Period (+483 Storm Max Max Max Max Status Event Level Depth Control Volume (m) (1/s) 0 K 240 min Winter 50.793 0.893 110.6 4584.3 0 K 360 min Winter 50.790 0.890 110.5 4572.2 0 K 440 min Winter 50.793 0.893 110.6 4584.3 0 K 360 min Winter 50.790 0.890 110.5 4572.2 0 K 4300 min Winter 50.793 0.893 110.6 4400.0 0 K 3600 min Winter 50.793 0.893 110.5 4520.0 0 K 4400 min Winter 50.793 0.893 110.5 4520.0 0 K 240 min Winter 50.790 0.696 104.9 3520.3 0 K 4240 min Winter 50.453 0.553 104.9 2767.0 0 K	harashtrs, 400076 India te 9/12/2024 10:56 AM Designed by NAI101538 le AT01 Pond.SRCX Checked by novyze Source Control 2020.1.3 Summary of Results for 200 year Return Period (+48 Storm Max Event Level Depth Control Volume (m) 240 min Winter 50.793 0.893 110.6 4584.3 O K 360 min Winter 50.790 0.890 110.5 4572.2 O K 480 min Winter 50.775 0.875 109.6 4491.0 O K 600 min Winter 50.760 0.860 108.6 4406.0 O K 720 min Winter 50.761 0.861 104.9 4063.9 O K 960 min Winter 50.697 0.797 104.9 4063.9 O K 2160 min Winter 50.453 0.553 104.9 2767.0 O K 2800 min Winter 50.454 0.36 79.5 1503.0 O K 2400 min Winter 10.347 0.342 93.7 1701.7 O K 2800 min Winter 17.992 0.0 5893.0 342 480 min Winter 14.278 0.0 6237.4 386 600 min Winter 11.929 0.0 674.0 540 960 min Winter 11.929 0.0 6748.0 540 <	harashtrs, 400076 India te 9/12/2024 10:56 AM Designed by NAI101538 le AT01 Pond.SRCX Checked by novyze Source Control 2020.1.3 Summary of Results for 200 year Return Period (+4 Summary of Results for 200 year Return Period (+4 Summary of Results for 200 year Return Period (+4 Summary of Results for 200 year Return Period (+4 Summary of Results for 200 year Return Period (+4 Summary of Results for 200 year Return Period (+4 Summary of Results for 200 year Return Period (+4 Summary of Results for 200 year Return Period (+4 Summary of Results for 200 year Return Period (+4 Summary of Results for 200 year Return Period (+4 Summary of Results for 200 year Return Period (+4 Source Control 2020.1.3 240 min Winter 50.793 0.893 110.6 4584.3 0 K 360 min Winter 50.790 0.890 110.5 4572.2 0 K 480 min Winter 50.760 0.860 108.6 406.0 0 K 104.9 4063.9 0 K 1440 min Winter 50.760 0.696 104.9 3520.3 0 K 2160 min Winter 50.760 0.696 104.9 3520.3 0 K 2160 min Winter 50.245 0.345 93.7 1701.7 0 K <t< td=""><td>Shtrs, 400076 India /12/2024 10:56 AM Designed by NAI101538 TO1 Pond.SRCX Checked by ze Source Control 2020.1.3 Summary of Results for 200 year Return Period (+4 Storm Max Max Max Status Storm Max Max Max Storm Rain Flooded Discharge Time-Feak Good colspan= 2 Storm (mm/hr) Storm Rain Flooded Discharge Time-Feak Storm Rain <td colspan<<="" td=""><td>andani Garden,</td><td>Powai, M</td><td></td><td></td><td></td><td></td><td></td></td></td></t<>	Shtrs, 400076 India /12/2024 10:56 AM Designed by NAI101538 TO1 Pond.SRCX Checked by ze Source Control 2020.1.3 Summary of Results for 200 year Return Period (+4 Storm Max Max Max Status Storm Max Max Max Storm Rain Flooded Discharge Time-Feak Good colspan= 2 Storm (mm/hr) Storm Rain Flooded Discharge Time-Feak Storm Rain <td colspan<<="" td=""><td>andani Garden,</td><td>Powai, M</td><td></td><td></td><td></td><td></td><td></td></td>	<td>andani Garden,</td> <td>Powai, M</td> <td></td> <td></td> <td></td> <td></td> <td></td>	andani Garden,	Powai, M					
ate 9/12/2024 10:56 AM Designed by NAI101538 Checked by ile AT01 Pond.SRCX Source Control 2020.1.3 Summary of Results for 200 year Return Period (+483 Storm Max Max Max Status Event Level Depth Control Volume (m) (m ³) 0 K 360 min Winter 50.793 0.893 110.6 4584.3 0 K 360 min Winter 50.790 0.890 110.5 4572.2 0 K 480 min Winter 50.790 0.890 105.6 4491.0 0 K 600 min Winter 50.760 0.860 108.6 4406.0 0 K 920 min Winter 50.767 0.860 108.6 4406.0 0 K 920 min Winter 50.760 0.860 108.6 4406.0 0 K 920 min Winter 50.450 0.661 104.9 900.8 K 1440 min Winter 50.596 0.696 104.9 92.3 0 K 1440 min Winter 50.245 0.357 104.9 92.2 0 K	te 9/12/2024 10:56 AM Designed by NAI101538 le AT01 Pond.SRCX Checked by novyze Source Control 2020.1.3 Summary of Results for 200 year Return Period (+48 Event Level Depth Control Volume (m) (m) (1/s) (m³) 240 min Winter 50.793 0.893 110.6 4584.3 O K 360 min Winter 50.793 0.893 110.6 4584.3 O K 360 min Winter 50.793 0.893 110.6 4491.0 O K 600 min Winter 50.796 0.890 110.5 4572.2 O K 480 min Winter 50.796 0.890 110.5 4372.2 O K 960 min Winter 50.797 0.875 109.6 4491.0 O K 900 min Winter 50.796 0.690 108.6 4406.0 O K 910 min Winter 50.596 0.697 0.797 104.9 4063.9 O K 92160 min Winter 50.596 0.696 104.9 3520.3 O K 2160 min Winter 50.245 0.347 0.447 103.9 2221.2 O K 4320 min Winter 50.245 0.336 79.5 1503.0 O K 5760 min Winter 17.992 0.0 5893.0 342 480 min Winter 14.278 0.0 6237.4 386 600 min Winter 11.929 0.0 6513.9 462 720 min Winter 10.300 0.0 6748.0 540 960 960 min Winter 4.308 0.0 8603.8 1364 280 min Winter 4.308 0.0 8603.8 1364	te 9/12/2024 10:56 AM Designed by NAI101538 le AT01 Pond.SRCX Checked by novyze Source Control 2020.1.3 Summary of Results for 200 year Return Period (+4 Storm Max Max Max Status Event Level Depth Control Volume (m) (m³) 240 min Winter 50.793 0.893 110.6 4584.3 0 K 360 min Winter 50.790 0.890 110.5 4572.2 0 K 480 min Winter 50.790 0.890 110.5 4572.2 0 K 600 min Winter 50.790 0.890 110.5 4572.2 0 K 960 min Winter 50.790 0.860 104.9 4491.0 0 K 960 min Winter 50.453 0.553 104.9 9267.0 0 K 2160 min Winter 50.453 0.345 93.7 1701.7 0 K 2160 min Winter 50.206 0.306 79.5 1503.0 0 K 2160 min Winter 14.278 0.0 6237.4 386 360 min Winter 11.929 0.0 6513.9 <t< td=""><td>X12/2024 10:56 AM Designed by NAI101538 T01 Pond.SRCX Checked by ze Source Control 2020.1.3 Source Control 2020.1.3 Summary of Results for 200 year Return Period (+4 Storm Max Max Max Max Status Storm Max Max Max Max Status Storm Max Max Max Status 240 min Winter 50.793 0.893 10.6 4584.3 O K 300 min Winter 50.793 0.893 10.6 4491.0 K 400 min Winter 50.793 0.893 104.9 4063.9 C 240 min Winter 50.793 0.803 104.9 4063.9 C 240 min Winter 50.697 104.9 4063.9 C 20 <td colspan<="" td=""><td>ashtrs, 400076</td><td>, India</td><td></td><td></td><td></td><td></td><td></td></td></td></t<>	X12/2024 10:56 AM Designed by NAI101538 T01 Pond.SRCX Checked by ze Source Control 2020.1.3 Source Control 2020.1.3 Summary of Results for 200 year Return Period (+4 Storm Max Max Max Max Status Storm Max Max Max Max Status Storm Max Max Max Status 240 min Winter 50.793 0.893 10.6 4584.3 O K 300 min Winter 50.793 0.893 10.6 4491.0 K 400 min Winter 50.793 0.893 104.9 4063.9 C 240 min Winter 50.793 0.803 104.9 4063.9 C 240 min Winter 50.697 104.9 4063.9 C 20 <td colspan<="" td=""><td>ashtrs, 400076</td><td>, India</td><td></td><td></td><td></td><td></td><td></td></td>	<td>ashtrs, 400076</td> <td>, India</td> <td></td> <td></td> <td></td> <td></td> <td></td>	ashtrs, 400076	, India					
ile AT01 Pond.SRCX Checked by nnovyze Source Control 2020.1.3 Summary of Results for 200 year Return Period (+483 Storm Max Max Max Max Max Status Event Level Depth Control Volume (m) (1/s) (m ³) 240 min Winter 50.793 0.893 110.6 4584.3 O K 360 min Winter 50.790 0.890 110.5 4572.2 O K 480 min Winter 50.775 0.875 109.6 4491.0 O K 720 min Winter 50.760 0.860 108.6 4406.0 O K 720 min Winter 50.761 0.861 107.5 4302.0 O K 960 min Winter 50.761 0.4811 107.5 4302.0 O K 920 min Winter 50.741 0.4811 107.5 4302.0 O K 2160 min Winter 50.453 0.553 104.9 2767.0 O K 2280 min Winter 50.347 0.447 103.9 2221.2 O K 4320 min Winter 50.245 0.345 93.7 1701.7 O K 5760 min Winter 50.245 0.345 93.7 1701.7 O K 5760 min Winter 17.992 0.0 5483.0 342 480 min Winter 14.278 0.0 6237.4 386 600 min Winter 11.929 0.0 6513.9 462 720 min Winter 10.300 0.0 6748.0 540 960 min Winter 11.929 0.0 6513.9 462 720 min Winter 5.914 0.0 7727.3 980 2160 min Winter 5.914 <	le AT01 Pond.SRCX Checked by novyze Source Control 2020.1.3 Summary of Results for 200 year Return Period (+48 Event Level Depth Control Volume (m) (m) (1/s) (m³) 240 min Winter 50.793 0.893 110.6 4584.3 0 K 360 min Winter 50.790 0.893 110.6 4584.3 0 K 360 min Winter 50.790 0.893 110.5 4572.2 0 K 480 min Winter 50.790 0.893 10.6 4491.0 0 K 600 min Winter 50.790 0.860 108.6 4406.0 0 K 720 min Winter 50.791 0.893 104.9 4063.9 0 K 1440 min Winter 50.697 0.797 104.9 4063.9 0 K 1440 min Winter 50.453 0.553 104.9 2767.0 0 K 280 min Winter 50.347 0.447 103.9 2221.2 0 K 4320 min Winter 50.245 0.345 93.7 1701.7 0 K 5760 min Winter 50.245 0.345 93.7 1701.7 0 K 5760 min Winter 14.278 0.0 5422.4 236 360 min Winter 14.292 0.0 5833.0 342 480 min Winter 14.278 0.0 6237.4 386 600 min Winter 11.929 0.0 6513.9 462 720 min Winter 19.29 200 min Winter 1.929 0.0 6513.9 462 720 min Winter 19.29 <td< td=""><td>le AT01 Pond.SRCX Checked by novyze Source Control 2020.1.3 Summary of Results for 200 year Return Period (+4 Storm Max Max Max Status Event Level Depth Control Volume (m) (1/s) 0 K 360 min Winter 50.793 0.893 110.6 4584.3 0 K 360 min Winter 50.793 0.893 110.5 4572.2 0 K 480 min Winter 50.790 0.890 110.5 4572.2 0 K 600 min Winter 50.770 0.860 108.6 4406.0 0 K 600 min Winter 50.760 0.860 108.6 4406.0 0 K 960 min Winter 50.697 0.797 104.9 4063.9 0 K 2160 min Winter 50.433 0.553 104.9 2221.2 0 K 4320 min Winter 50.206 0.306 79.5 1503.0 0 K 240 min Winter 17.992 0.0 5893.0 342 400 min Winter 17.992 0.0 5893.0 342 400 min Winter 1</td><td>Story Rain Flodeded Discussion 201 Pond.SRCX Checked by Source Control 2020.1.3 Summary of Results for 200 year Return Period (t4 Event Level Depth Control Volume (m) Max Max Max Status 240 min Winter 50.793 0.893 110.6 4584.3 O K 360 min Winter 50.790 0.890 110.5 4572.2 O K 480 min Winter 50.790 0.890 110.5 4572.2 O K 480 min Winter 50.790 0.890 110.5 4572.2 O K 490 min Winter 50.797 0.890 100.5 4572.2 O K 900 min Winter 50.797 0.90 440.0 O K 200 K 900 min Winter 50.470 0.841 107.5 302.0 O K 2160 min Winter 50.493 0.553 104.9 2767.0 O K 2800 min Winter 50.347 0.447 103.9 222.1 O K 2800 min Winter 17.992 0.0 583.0 322 A22 480 m</td><td>9/12/2024 10:56</td><td>AM</td><td>Des</td><td>igned</td><td>by NAT</td><td>10153</td><td>8</td></td<>	le AT01 Pond.SRCX Checked by novyze Source Control 2020.1.3 Summary of Results for 200 year Return Period (+4 Storm Max Max Max Status Event Level Depth Control Volume (m) (1/s) 0 K 360 min Winter 50.793 0.893 110.6 4584.3 0 K 360 min Winter 50.793 0.893 110.5 4572.2 0 K 480 min Winter 50.790 0.890 110.5 4572.2 0 K 600 min Winter 50.770 0.860 108.6 4406.0 0 K 600 min Winter 50.760 0.860 108.6 4406.0 0 K 960 min Winter 50.697 0.797 104.9 4063.9 0 K 2160 min Winter 50.433 0.553 104.9 2221.2 0 K 4320 min Winter 50.206 0.306 79.5 1503.0 0 K 240 min Winter 17.992 0.0 5893.0 342 400 min Winter 17.992 0.0 5893.0 342 400 min Winter 1	Story Rain Flodeded Discussion 201 Pond.SRCX Checked by Source Control 2020.1.3 Summary of Results for 200 year Return Period (t4 Event Level Depth Control Volume (m) Max Max Max Status 240 min Winter 50.793 0.893 110.6 4584.3 O K 360 min Winter 50.790 0.890 110.5 4572.2 O K 480 min Winter 50.790 0.890 110.5 4572.2 O K 480 min Winter 50.790 0.890 110.5 4572.2 O K 490 min Winter 50.797 0.890 100.5 4572.2 O K 900 min Winter 50.797 0.90 440.0 O K 200 K 900 min Winter 50.470 0.841 107.5 302.0 O K 2160 min Winter 50.493 0.553 104.9 2767.0 O K 2800 min Winter 50.347 0.447 103.9 222.1 O K 2800 min Winter 17.992 0.0 583.0 322 A22 480 m	9/12/2024 10:56	AM	Des	igned	by NAT	10153	8	
Storm Max Max </td <td>Storm Max Max Max Max Max Max Max Storm Storm Max Max Max Max Storm Storm Control Volume Volume Max Max Max Max Max Storm Max Max</td> <td>Source Control 2020.1.3 Source Control 2020.1.3 Summary of Results for 200 year Return Period (+4 Event Max Max Max Max Status Event Level Depth Control Volume (m) (1/s) 0 0 0 240 min Winter 50.793 0.893 110.6 4584.3 0 K 360 min Winter 50.790 0.893 110.5 4572.2 0 K 480 min Winter 50.790 0.893 110.5 4572.2 0 K 600 min Winter 50.790 0.801 108.5 4491.0 0 K 720 min Winter 50.790 0.801 108.6 4406.0 0 K 960 min Winter 50.697 104.9 4063.9 0 K 1440 min Winter 50.397 104.9 220.3 0 K 2160 min Winter 50.245 0.345 93.7 1701.7 0 K 220 min Winter 50.206 0.306 79.5 1503.0 0 K 240 min Winter 1</td> <td>Storm Rain Flooted by 22 Source Control 2020.1.3 Summary of Results for 200 year Return Period (+4 Event Level Depth Control Volume (m) Max Max Max Status 240 min Winter 50.793 0.893 110.6 4584.3 0 K 360 min Winter 50.790 0.890 110.5 4572.2 0 K 480 min Winter 50.775 0.875 109.6 4490.0 0 K 600 min Winter 50.776 0.860 108.6 4406.0 0 K 960 min Winter 50.796 0.696 104.9 4063.9 0 K 1440 min Winter 50.453 0.553 104.9 2767.0 0 K 2160 min Winter 50.206 0.306 79.5 1503.0 0 K 330 min Winter 50.206 0.306 79.5 1503.0 0 K 240 min Winter 24.853 0.0 5422.4 236 360 min Winter 14.278 0.0 5833.0 342</td> <td>AT01 Pond.SRCX</td> <td></td> <td>Che</td> <td>cked 1</td> <td></td> <td>10100</td> <td>0</td>	Storm Max Max Max Max Max Max Max Storm Storm Max Max Max Max Storm Storm Control Volume Volume Max Max Max Max Max Storm Max	Source Control 2020.1.3 Source Control 2020.1.3 Summary of Results for 200 year Return Period (+4 Event Max Max Max Max Status Event Level Depth Control Volume (m) (1/s) 0 0 0 240 min Winter 50.793 0.893 110.6 4584.3 0 K 360 min Winter 50.790 0.893 110.5 4572.2 0 K 480 min Winter 50.790 0.893 110.5 4572.2 0 K 600 min Winter 50.790 0.801 108.5 4491.0 0 K 720 min Winter 50.790 0.801 108.6 4406.0 0 K 960 min Winter 50.697 104.9 4063.9 0 K 1440 min Winter 50.397 104.9 220.3 0 K 2160 min Winter 50.245 0.345 93.7 1701.7 0 K 220 min Winter 50.206 0.306 79.5 1503.0 0 K 240 min Winter 1	Storm Rain Flooted by 22 Source Control 2020.1.3 Summary of Results for 200 year Return Period (+4 Event Level Depth Control Volume (m) Max Max Max Status 240 min Winter 50.793 0.893 110.6 4584.3 0 K 360 min Winter 50.790 0.890 110.5 4572.2 0 K 480 min Winter 50.775 0.875 109.6 4490.0 0 K 600 min Winter 50.776 0.860 108.6 4406.0 0 K 960 min Winter 50.796 0.696 104.9 4063.9 0 K 1440 min Winter 50.453 0.553 104.9 2767.0 0 K 2160 min Winter 50.206 0.306 79.5 1503.0 0 K 330 min Winter 50.206 0.306 79.5 1503.0 0 K 240 min Winter 24.853 0.0 5422.4 236 360 min Winter 14.278 0.0 5833.0 342	AT01 Pond.SRCX		Che	cked 1		10100	0	
Storn Max Max Max Max Max Storn Event Level Depth Control Volume (m) (m ³) 240 min Winter 50.793 0.893 110.6 4584.3 0 K 360 min Winter 50.790 0.890 110.5 4572.2 0 K 480 min Winter 50.790 0.890 110.5 4572.2 0 K 480 min Winter 50.790 0.860 108.6 4496.0 0 K 600 min Winter 50.770 0.860 108.6 4496.0 0 K 720 min Winter 50.741 0.841 107.5 4302.0 0 K 1440 min Winter 50.596 0.696 104.9 3520.3 0 K 2160 min Winter 50.453 0.553 104.9 2767.0 0 K 2880 min Winter 50.206 0.306 79.5 1503.0 0 K 4320 min Winter 50.2245 0.345 93.7 1701.7 0 K 5760 min Winter 17.992 0.0 5893.0 342 480 min Winter 17.992 0.0 5893.0 <td>Storm Max Max Max Max Max Max Storm Event Level Depth Control Volume (m) (m) (l/s) (m³) 240 min Winter 50.793 0.893 110.6 4584.3 0 K 360 min Winter 50.790 0.890 110.5 4572.2 0 K 480 min Winter 50.755 109.6 4491.0 0 K 600 min Winter 50.760 0.860 108.6 4406.0 0 K 960 min Winter 50.751 109.6 4491.0 0 K 960 min Winter 50.751 0.861 108.6 4406.0 0 K 960 min Winter 50.596 0.696 104.9 3520.3 0 K 2160 min Winter 50.437 0.447 103.9 2221.2 0 K 2800 min Winter 50.206 0.306 79.5 1503.0 0 K 240 min Winter 17.992 0.0 5893.0 342 480 min Winter 14.278</td> <td>Storm Max Max Max Max Storm Event Level Depth Control Volume (m) (m) (1/s) (m³) 240 min Winter 50.793 0.893 110.6 4584.3 0 360 min Winter 50.793 0.893 110.6 4584.3 0 360 min Winter 50.795 0.893 110.6 4584.3 0 360 min Winter 50.796 0.890 110.5 4572.2 0 K 480 min Winter 50.797 0.890 110.5 4572.2 0 K 900 min Winter 50.797 0.890 110.5 4302.0 0 K 900 min Winter 50.696 104.9 3520.3 0 K 2160 min Winter 50.345 0.345 93.7 1701.7 0 K 220 min Winter 17.992 0.0 5893.0</td> <td>Store Store Descrete Control Descrete Storm Max Max Max Max Starus Event Level Depth Control Volume (m) (l/s) (m³) 0.8 240 min Winter 50.793 0.893 110.6 4584.3 0 K 360 min Winter 50.790 0.890 110.5 4572.2 0 K 480 min Winter 50.775 0.875 109.6 4491.0 0 K 600 min Winter 50.760 0.860 108.6 4066.0 0 K 720 min Winter 50.775 0.971 104.9 4063.9 0 K 1440 min Winter 50.453 0.553 104.9 2767.0 0 K 2160 min Winter 50.206 0.306 79.5 1503.0 0 K 240 min Winter 17.992 0.0 5893.0 342 480 min Winter 17.992</td> <td></td> <td></td> <td>Sou</td> <td>irce Co</td> <td>ontrol</td> <td>2020</td> <td>1 3</td>	Storm Max Max Max Max Max Max Storm Event Level Depth Control Volume (m) (m) (l/s) (m³) 240 min Winter 50.793 0.893 110.6 4584.3 0 K 360 min Winter 50.790 0.890 110.5 4572.2 0 K 480 min Winter 50.755 109.6 4491.0 0 K 600 min Winter 50.760 0.860 108.6 4406.0 0 K 960 min Winter 50.751 109.6 4491.0 0 K 960 min Winter 50.751 0.861 108.6 4406.0 0 K 960 min Winter 50.596 0.696 104.9 3520.3 0 K 2160 min Winter 50.437 0.447 103.9 2221.2 0 K 2800 min Winter 50.206 0.306 79.5 1503.0 0 K 240 min Winter 17.992 0.0 5893.0 342 480 min Winter 14.278	Storm Max Max Max Max Storm Event Level Depth Control Volume (m) (m) (1/s) (m³) 240 min Winter 50.793 0.893 110.6 4584.3 0 360 min Winter 50.793 0.893 110.6 4584.3 0 360 min Winter 50.795 0.893 110.6 4584.3 0 360 min Winter 50.796 0.890 110.5 4572.2 0 K 480 min Winter 50.797 0.890 110.5 4572.2 0 K 900 min Winter 50.797 0.890 110.5 4302.0 0 K 900 min Winter 50.696 104.9 3520.3 0 K 2160 min Winter 50.345 0.345 93.7 1701.7 0 K 220 min Winter 17.992 0.0 5893.0	Store Store Descrete Control Descrete Storm Max Max Max Max Starus Event Level Depth Control Volume (m) (l/s) (m ³) 0.8 240 min Winter 50.793 0.893 110.6 4584.3 0 K 360 min Winter 50.790 0.890 110.5 4572.2 0 K 480 min Winter 50.775 0.875 109.6 4491.0 0 K 600 min Winter 50.760 0.860 108.6 4066.0 0 K 720 min Winter 50.775 0.971 104.9 4063.9 0 K 1440 min Winter 50.453 0.553 104.9 2767.0 0 K 2160 min Winter 50.206 0.306 79.5 1503.0 0 K 240 min Winter 17.992 0.0 5893.0 342 480 min Winter 17.992			Sou	irce Co	ontrol	2020	1 3	
Summary of Results for 200 year Return Period (+483 Storm Max Max Max Max Max Status Event Level Depth Control Volume Volume 240 min Winter 50.793 0.893 110.6 4584.3 O K 360 min Winter 50.790 0.890 110.5 4572.2 O K 480 min Winter 50.776 0.860 108.6 4406.0 O K 600 min Winter 50.760 0.860 108.6 4406.0 O K 720 min Winter 50.597 0.797 104.9 3520.3 O K 1440 min Winter 50.597 0.797 104.9 3520.3 O K 1440 min Winter 50.453 0.553 104.9 2767.0 O K 2880 min Winter 50.206 0.306 79.5 1503.0 O K 3200 min Winter 50.206 0.306 79.5 1503.0 O K 360 min Winter 17.992 0.0 5893.0 342 <td>Summary of Results for 200 year Return Period (+48 Storm Max Max Max Max Max Status Event Level Depth Control Volume Volume 240 min Winter 50.793 0.893 110.6 4584.3 0 K 360 min Winter 50.793 0.893 110.5 4572.2 0 K 480 min Winter 50.775 0.875 109.6 4491.0 0 K 600 min Winter 50.760 0.860 108.6 4406.0 0 K 720 min Winter 50.767 0.797 104.9 9403.9 0 K 1440 min Winter 50.593 0.553 104.9 2767.0 0 K 2160 min Winter 50.206 0.306 79.5 1503.0 0 K 2160 min Winter 17.92 0.47 103.9 2221.2 0 K 2160</td> <td>Storn Event Max Level Max Opth Max Control Max Volume Max Cumary Max Volume Max Volume Max Volume Max Cumary Max Volume Max Value Value Value Value <th< td=""><td>Storm Max Max<!--</td--><td>120</td><td></td><td></td><td>200 0</td><td></td><td>2020.</td><td></td></td></th<></td>	Summary of Results for 200 year Return Period (+48 Storm Max Max Max Max Max Status Event Level Depth Control Volume Volume 240 min Winter 50.793 0.893 110.6 4584.3 0 K 360 min Winter 50.793 0.893 110.5 4572.2 0 K 480 min Winter 50.775 0.875 109.6 4491.0 0 K 600 min Winter 50.760 0.860 108.6 4406.0 0 K 720 min Winter 50.767 0.797 104.9 9403.9 0 K 1440 min Winter 50.593 0.553 104.9 2767.0 0 K 2160 min Winter 50.206 0.306 79.5 1503.0 0 K 2160 min Winter 17.92 0.47 103.9 2221.2 0 K 2160	Storn Event Max Level Max Opth Max Control Max Volume Max Cumary Max Volume Max Volume Max Volume Max Cumary Max Volume Max Value Value Value Value <th< td=""><td>Storm Max Max<!--</td--><td>120</td><td></td><td></td><td>200 0</td><td></td><td>2020.</td><td></td></td></th<>	Storm Max Max </td <td>120</td> <td></td> <td></td> <td>200 0</td> <td></td> <td>2020.</td> <td></td>	120			200 0		2020.		
Storm Event Max Level Max Depth (m) Max (1/s) Max Volume (m ³) Status Volume (m ³) 240 min Winter 50.793 0.893 110.6 4584.3 0 K 360 min Winter 50.790 0.890 110.5 4572.2 0 K 480 min Winter 50.775 0.875 109.6 4491.0 0 K 600 min Winter 50.776 0.875 109.6 4490.0 0 K 960 min Winter 50.797 104.9 4063.9 0 K 1440 min Winter 50.453 0.553 104.9 2767.0 0 K 2800 min Winter 50.437 0.447 103.9 2221.2 0 K 4320 min Winter 50.206 0.306 79.5 1503.0 0 K 5760 min Winter 17.992 0.0 5893.0 342 480 min Winter 14.278 0.0 6237.4 386 600 min Winter 19.992 0.0 6513.9 462 720 min Winter 11.929 0.0 6513.9 <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>Storm Max Max Max Max Max Status 240 min Winter 50.793 0.893 110.6 4584.3 0 K 360 min Winter 50.790 0.890 110.5 4572.2 0 K 480 min Winter 50.790 0.890 110.5 4572.2 0 K 480 min Winter 50.790 0.860 108.6 4401.0 0 K 600 min Winter 50.775 0.875 109.6 4491.0 0 K 720 min Winter 50.760 0.841 107.5 4302.0 0 K 1440 min Winter 50.596 0.696 104.9 3520.3 0 K 2160 min Winter 50.245 0.345 93.7 7101.7 0 K 3200 min Winter 50.206 0.306 79.5 1503.0 0 K 240 min Winter 24.853 0.0 5422.4 236 360 min Winter <</td> <td>Summary</td> <td>of Results</td> <td>for 2</td> <td>200 ve</td> <td>ar Retı</td> <td>ırn Pe</td> <td>riod (+48%</td>	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Storm Max Max Max Max Max Status 240 min Winter 50.793 0.893 110.6 4584.3 0 K 360 min Winter 50.790 0.890 110.5 4572.2 0 K 480 min Winter 50.790 0.890 110.5 4572.2 0 K 480 min Winter 50.790 0.860 108.6 4401.0 0 K 600 min Winter 50.775 0.875 109.6 4491.0 0 K 720 min Winter 50.760 0.841 107.5 4302.0 0 K 1440 min Winter 50.596 0.696 104.9 3520.3 0 K 2160 min Winter 50.245 0.345 93.7 7101.7 0 K 3200 min Winter 50.206 0.306 79.5 1503.0 0 K 240 min Winter 24.853 0.0 5422.4 236 360 min Winter <	Summary	of Results	for 2	200 ve	ar Retı	ırn Pe	riod (+48%	
Storm Max Max </td <td>Storn Event Max Level (m) Max Peth (m) Max Control (1/s) Max Volume Max Volume</td> <td>Storn Event Max (m) Max Perch (m) Max (l,ls) Max (m,s) Max (m,s)</td> <td>Storn Event Max Level (m) Max Papth Max Control (1/2) Max Max (m) Max (m) Max (m)</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td>	Storn Event Max Level (m) Max Peth (m) Max Control (1/s) Max Volume	Storn Event Max (m) Max Perch (m) Max (l,ls) Max (m,s)	Storn Event Max Level (m) Max Papth Max Control (1/2) Max Max (m) Max (m) Max (m)				-				
EventLevelDepth ControlVolume (m)240min Winter 50.793 0.893 110.6 4584.3 0 K360min Winter 50.790 0.890 110.5 4572.2 0 K480min Winter 50.770 0.890 110.5 4572.2 0 K600min Winter 50.775 0.875 100.6 4491.0 0 K600min Winter 50.7741 0.860 108.6 4406.0 0 K720min Winter 50.697 0.797 104.9 4063.9 0 K960min Winter 50.596 0.696 104.9 3520.3 0 K2160min Winter 50.347 0.447 103.9 2221.2 0 K2300min Winter 50.245 0.345 93.7 1701.7 0 K2301Winter 50.206 0.306 79.5 1503.0 0 K5760min Winter 17.992 0.0 5893.0 342 400min Winter 11.929 0.0 6513.9 462 720min Winter 14.278 0.0 6748.0 540 960min Winter 10.300 0.0 6748.0 540 960min Winter 10.300 0.0 6748.0 540 960min Winter 8.174 0.0 77135.9 692 1440min Winter 5.914 0.0 7727.3 960 2160min Winter 5	EventLevelDepthControlVolume(m)(m)(1/s)(m³)240min Winter 50.793 0.893 110.6 4584.3 0 K360min Winter 50.775 0.890 110.5 4572.2 0 K480min Winter 50.775 0.890 110.5 4572.2 0 K480min Winter 50.775 0.860 108.6 4491.0 0 K600min Winter 50.7760 0.860 108.6 4406.0 0 K720min Winter 50.760 0.860 104.9 4063.9 0 K960min Winter 50.453 0.553 104.9 2767.0 0 K2800min Winter 50.453 0.553 104.9 2221.2 0 K4320min Winter 50.206 0.306 79.5 1503.0 0 K5760min Winter 24.853 0.0 5422.4 236 360min Winter 14.278 0.0 5422.4 236 360min Winter 14.278 0.0 6237.4 386 600min Winter 11.929 0.0 6513.9 462 720min Winter 10.300 0.0 6748.0 540 960min Winter 8.174 0.0 7135.9 692 1440min Winter 8.174 0.0 7727.3 980 240min Winter 3.465 0.0 803.8 1364 <td>EventLevelDepthControlVolume(m)(m)(1/s)(m³)240minWinter$50.793$$0.893$$110.6$$4584.3$$0$ K360minWinter$50.790$$0.890$$110.5$$4572.2$$0$ K480minWinter$50.775$$0.875$$109.6$$4491.0$$0$ K600minWinter$50.775$$0.875$$109.6$$4491.0$$0$ K600minWinter$50.775$$0.891$$108.6$$4406.0$$0$ K720minWinter$50.697$$0.797$$104.9$$4063.9$$0$ K1440minWinter$50.596$$0.696$$104.9$$3520.3$$0$ K2160minWinter$50.347$$0.447$$103.9$$2221.2$$0$ K2300minWinter$50.245$$0.345$$93.7$$1701.7$$0$ K5760minWinter$50.206$$0.306$$79.5$$1503.0$$0$ K240minWinter$17.992$$0.0$$5893.0$$342$480minWinter$17.992$$0.0$$5893.0$$342$480minWinter$11.329$$0.0$$6748.0$$540$960minWinter$10.300$$0.0$$6748.0$$540$960minWinter$5.914$$0.0$$7727.3$$980$2160minWinter$5.9$</td> <td>EventLevelDepthControlVolume(m)(m)(l/s)(m³)240min Winter50.7930.893110.64584.30 K360min Winter50.7900.890110.54572.20 K480min Winter50.7900.890110.54572.20 K480min Winter50.7900.880108.64491.00 K600min Winter50.7900.840104.94063.90 K960min Winter50.6970.797104.94063.90 K1440min Winter50.4530.553104.92767.00 K2800min Winter50.3470.447103.92221.20 K3200min Winter50.2450.34593.71701.70 K5760min Winter50.2060.30679.51503.00 KColumeVolumeVolume(mins)(m3)240min Winter17.9920.05893.0342480min Winter11.9290.06513.9462720min Winter11.9290.06513.9462720min Winter5.9140.0772.7980960min Winter5.9140.0772.7980160min Winter3.4650.09216.417044320min Winter3.4650.09216.417044320min Winter3.46</td> <td></td> <td>Storm</td> <td>Max</td> <td>Max</td> <td>Max</td> <td>Max</td> <td>Status</td>	EventLevelDepthControlVolume(m)(m)(1/s)(m³)240minWinter 50.793 0.893 110.6 4584.3 0 K360minWinter 50.790 0.890 110.5 4572.2 0 K480minWinter 50.775 0.875 109.6 4491.0 0 K600minWinter 50.775 0.875 109.6 4491.0 0 K600minWinter 50.775 0.891 108.6 4406.0 0 K720minWinter 50.697 0.797 104.9 4063.9 0 K1440minWinter 50.596 0.696 104.9 3520.3 0 K2160minWinter 50.347 0.447 103.9 2221.2 0 K2300minWinter 50.245 0.345 93.7 1701.7 0 K5760minWinter 50.206 0.306 79.5 1503.0 0 K240minWinter 17.992 0.0 5893.0 342 480minWinter 17.992 0.0 5893.0 342 480minWinter 11.329 0.0 6748.0 540 960minWinter 10.300 0.0 6748.0 540 960minWinter 5.914 0.0 7727.3 980 2160minWinter 5.9	EventLevelDepthControlVolume(m)(m)(l/s)(m³)240min Winter50.7930.893110.64584.30 K360min Winter50.7900.890110.54572.20 K480min Winter50.7900.890110.54572.20 K480min Winter50.7900.880108.64491.00 K600min Winter50.7900.840104.94063.90 K960min Winter50.6970.797104.94063.90 K1440min Winter50.4530.553104.92767.00 K2800min Winter50.3470.447103.92221.20 K3200min Winter50.2450.34593.71701.70 K5760min Winter50.2060.30679.51503.00 KColumeVolumeVolume(mins)(m3)240min Winter17.9920.05893.0342480min Winter11.9290.06513.9462720min Winter11.9290.06513.9462720min Winter5.9140.0772.7980960min Winter5.9140.0772.7980160min Winter3.4650.09216.417044320min Winter3.4650.09216.417044320min Winter3.46		Storm	Max	Max	Max	Max	Status	
Kin Kin Flooded Discharge Time-Peak 240 min Winter 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,	(m) (m) (1/s) (m') 240 min Winter 50.793 0.893 110.6 4584.3 0 K 360 min Winter 50.790 0.890 110.5 4572.2 0 K 480 min Winter 50.775 0.875 109.6 4491.0 0 K 600 min Winter 50.7760 0.860 108.6 4406.0 0 K 720 min Winter 50.697 0.797 104.9 4063.9 0 K 1440 min Winter 50.596 0.666 104.9 3520.3 0 K 2160 min Winter 50.347 0.447 103.9 221.2 0 K 4320 min Winter 50.206 0.306 79.5 1503.0 0 K 5760 min Winter 17.992 0.0 5893.0 342 480 min Winter 14.278 0.0 6237.4 386 600 min Winter 11.929 0.0 6513.9 462 720 min Winter 10.300 0.0 6748.0 540 960 min Winter 11.929 0.0 6513.9 462 720 min Winter <	Kin Flooded Discharge Time-Peak 240 min Winter 24.853 0.0 5422.4 236 360 min Winter 50.790 0.890 110.5 4572.2 0 K 480 min Winter 50.775 0.855 109.6 4491.0 0 K 600 min Winter 50.760 0.860 108.6 4406.0 0 K 720 min Winter 50.760 0.860 108.6 4406.0 0 K 960 min Winter 50.697 0.797 104.9 4063.9 0 K 1440 min Winter 50.453 0.553 104.9 2767.0 0 K 2800 min Winter 50.347 0.447 103.9 2221.2 0 K 4320 min Winter 50.206 0.306 79.5 1503.0 0 K 5760 min Winter 17.992 0.0 5893.0 342 480 min Winter 17.992 0.0 6513.9 3462 720 min Winter 11.929 0.0 6513.9 3462 720 min Winter 10.300 0.0 6748.0 540 960 min Wint	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Event	Level	Depth	Control	Volume	3	
240 min Winter 50.793 0.893 110.6 4584.3 0 K 360 min Winter 50.790 0.890 110.5 4572.2 0 K 480 min Winter 50.775 0.875 109.6 4491.0 0 K 600 min Winter 50.760 0.860 108.6 4406.0 0 K 720 min Winter 50.741 0.841 107.5 4302.0 0 K 960 min Winter 50.596 0.696 104.9 4063.9 0 K 1440 min Winter 50.453 0.553 104.9 2767.0 0 K 2800 min Winter 50.245 0.345 93.7 1701.7 0 K 2800 min Winter 50.206 0.306 79.5 1503.0 0 K 5760 min Winter 17.992 0.0 5893.0 342 480 min Winter 14.278 0.0 6237.4 386 600 min Winter 11.929 0.0 6513.9 462 720 min Winter 10.300 0.0 6748.0 540 960 min Winter 10.300 0.0 6748.0 540	240 min Winter 50.793 0.893 110.6 4584.3 0 K 360 min Winter 50.790 0.890 110.5 4572.2 0 K 480 min Winter 50.775 0.875 109.6 4491.0 0 K 600 min Winter 50.760 0.860 108.6 406.0 0 K 720 min Winter 50.761 0.841 107.5 4302.0 0 K 960 min Winter 50.596 0.696 104.9 3520.3 0 K 2160 min Winter 50.347 0.447 103.9 2221.2 0 K 4320 min Winter 50.206 0.306 79.5 1503.0 0 K 5760 min Winter 50.206 0.306 79.5 1503.0 0 K 360 min Winter 17.992 0.0 5893.0 342 480 min Winter 14.278 0.0 6237.4 386 600 min Winter 11.929 0.0 6513.9 462 720 min Winter 10.300 0.0 6748.0 540 960 min Winter 1.174 0.0 7135.9 692	240 min Winter 50.793 0.893 110.6 4584.3 0 K 360 min Winter 50.790 0.890 110.5 4572.2 0 K 480 min Winter 50.775 0.875 109.6 4491.0 0 K 600 min Winter 50.760 0.860 108.6 4406.0 0 K 720 min Winter 50.771 0.861 107.5 4302.0 0 K 960 min Winter 50.697 0.797 104.9 4063.9 0 K 1440 min Winter 50.453 0.553 104.9 2767.0 0 K 280 min Winter 50.347 0.447 103.9 2221.2 0 K 4320 min Winter 50.206 0.306 79.5 1503.0 0 K 5760 min Winter 50.206 0.306 79.5 1503.0 0 K 240 min Winter 17.992 0.0 5893.0 342 480 min Winter 14.278 0.0 6237.4 386 600 min Winter 11.929 0.0 6513.9 462 720 min Winter 10.300 0.0 6748.0 <td>240 min Winter 50.793 0.893 110.6 4584.3 0 K 360 min Winter 50.790 0.890 110.5 4572.2 0 K 480 min Winter 50.775 0.875 109.6 4491.0 0 K 600 min Winter 50.760 0.860 108.6 4406.0 0 K 720 min Winter 50.741 0.841 107.5 4302.0 0 K 960 min Winter 50.697 0.797 104.9 4063.9 0 K 1440 min Winter 50.453 0.553 104.9 2520.3 0 K 2160 min Winter 50.245 0.345 93.7 1701.7 0 K 2300 min Winter 50.245 0.345 93.7 1701.7 0 K 5760 min Winter 17.992 0.0 5422.4 236 360 min Winter 17.992 0.0 5433.9 342 480 min Winter 14.278 0.0 6237.4 386 600 min Winter 11.929 0.0 6513.9 462 720 min Winter 10.300 0.0 6748.0 540</td> <td></td> <td></td> <td>(m)</td> <td>(m)</td> <td>(1/5)</td> <td>(m-)</td> <td></td>	240 min Winter 50.793 0.893 110.6 4584.3 0 K 360 min Winter 50.790 0.890 110.5 4572.2 0 K 480 min Winter 50.775 0.875 109.6 4491.0 0 K 600 min Winter 50.760 0.860 108.6 4406.0 0 K 720 min Winter 50.741 0.841 107.5 4302.0 0 K 960 min Winter 50.697 0.797 104.9 4063.9 0 K 1440 min Winter 50.453 0.553 104.9 2520.3 0 K 2160 min Winter 50.245 0.345 93.7 1701.7 0 K 2300 min Winter 50.245 0.345 93.7 1701.7 0 K 5760 min Winter 17.992 0.0 5422.4 236 360 min Winter 17.992 0.0 5433.9 342 480 min Winter 14.278 0.0 6237.4 386 600 min Winter 11.929 0.0 6513.9 462 720 min Winter 10.300 0.0 6748.0 540			(m)	(m)	(1/5)	(m-)		
360 min Winter 50.790 0.890 110.5 4572.2 0 K 480 min Winter 50.775 0.875 109.6 4491.0 0 K 600 min Winter 50.760 0.860 108.6 4406.0 0 K 720 min Winter 50.760 0.860 108.6 4406.0 0 K 720 min Winter 50.791 104.9 4063.9 0 K 960 min Winter 50.596 0.696 104.9 3520.3 0 K 1440 min Winter 50.347 0.447 103.9 2221.2 0 K 280 min Winter 50.206 0.306 79.5 1503.0 0 K 5760 min Winter 50.206 0.306 79.5 1503.0 0 K 5760 min Winter 17.992 0.0 5493.0 342 480 min Winter 14.278 0.0 6237.4 386 600 min Winter 11.929 0.0 6513.9 462 720 min Winter 10.300 0.0 6748.0 540 960 min Winter 11.929 0.0 6513.9 462	360 min Winter 50.790 0.890 110.5 4572.2 0 K 480 min Winter 50.775 0.875 109.6 4491.0 0 K 600 min Winter 50.760 0.860 108.6 4406.0 0 K 720 min Winter 50.771 104.9 4063.9 0 K 960 min Winter 50.697 0.797 104.9 4063.9 0 K 1440 min Winter 50.596 0.696 104.9 3520.3 0 K 2160 min Winter 50.453 0.553 104.9 2767.0 0 K 2880 min Winter 50.245 0.345 93.7 1701.7 0 K 5760 min Winter 50.206 0.306 79.5 1503.0 0 K 240 min Winter 14.278 0.0 5422.4 236 360 min Winter 17.992 0.0 5893.0 342 480 min Winter 14.278 0.0 6237.4 386 600 min Winter 10.300 0.0 6748.0 540 960 min Winter 1.914 0.0 7727.3 980	360 min Winter 50.790 0.890 110.5 4572.2 0 K 480 min Winter 50.775 0.875 109.6 4491.0 0 K 600 min Winter 50.760 0.860 108.6 4406.0 0 K 720 min Winter 50.741 0.841 107.5 4302.0 0 K 960 min Winter 50.697 0.797 104.9 4063.9 0 K 1440 min Winter 50.596 0.696 104.9 3520.3 0 K 2160 min Winter 50.453 0.553 104.9 2767.0 0 K 2880 min Winter 50.245 0.345 93.7 1701.7 0 K 5760 min Winter 50.206 0.306 79.5 1503.0 0 K 5760 min Winter 17.992 0.0 5493.0 342 480 min Winter 17.992 0.0 5493.0 342 480 min Winter 11.929 0.0 6513.9 462 720 min Winter 11.929 0.0 6513.9 462 720 min Winter 10.300 0.0 6748.0 540	360 min Winter 50.790 0.890 110.5 4572.2 0 K 480 min Winter 50.775 0.875 109.6 4491.0 0 K 600 min Winter 50.760 0.860 108.6 4406.0 0 K 720 min Winter 50.741 0.841 107.5 4302.0 0 K 960 min Winter 50.596 0.696 104.9 4063.9 0 K 1440 min Winter 50.453 0.553 104.9 2767.0 0 K 2880 min Winter 50.245 0.345 93.7 1701.7 0 K 2880 min Winter 50.206 0.306 79.5 1503.0 0 K 4320 min Winter 50.206 0.306 79.5 1503.0 0 K 5760 min Winter 17.992 0.0 5893.0 342 480 min Winter 14.278 0.0 6237.4 386 600 min Winter 11.929 0.0 6513.9 462 720 min Winter 10.300 0.0 6748.0 540 960 min Winter 1.929 0.0 6513.9 692	240	min Winter	50.793	0.893	110.6	4584.3	в ок	
480 min Winter 50.775 0.875 109.6 4491.0 0 K 600 min Winter 50.760 0.860 108.6 4406.0 0 K 720 min Winter 50.741 0.841 107.5 4302.0 0 K 960 min Winter 50.697 0.797 104.9 4063.9 0 K 1440 min Winter 50.596 0.696 104.9 3520.3 0 K 2160 min Winter 50.453 0.553 104.9 2767.0 0 K 280 min Winter 50.245 0.345 93.7 1701.7 0 K 5760 min Winter 50.206 0.306 79.5 1503.0 0 K 5760 min Winter 17.992 0.0 5893.0 342 480 min Winter 14.278 0.0 6237.4 386 600 min Winter 10.300 0.0 6748.0 540 960 min Winter 11.929 0.0 6513.9 462 720 min Winter 10.300 0.0 6748.0 540 960 min Winter 10.300 0.0 6748.0 540 960 min Winter 14.278 0.0 6237.4 386 600 min Winter 10.300 0.0 6748.0 540 960 min Winter 8.174 0.0 7135.9 692 1440 min Winter 5.914 0.0 727.3 980	480 min Winter 50.775 0.875 109.6 4491.0 0 K 600 min Winter 50.760 0.860 108.6 4406.0 0 K 720 min Winter 50.741 0.841 107.5 4302.0 0 K 960 min Winter 50.697 0.797 104.9 4063.9 0 K 1440 min Winter 50.596 0.696 104.9 3520.3 0 K 2160 min Winter 50.453 0.553 104.9 2767.0 0 K 2800 min Winter 50.453 0.553 104.9 2767.0 0 K 4320 min Winter 50.245 0.345 93.7 1701.7 0 K 5760 min Winter 50.206 0.306 79.5 1503.0 0 K Kevent Wolume (mins) (m³) (m³) (m³) 236 360 min Winter 17.992 0.0 5493.0 342 480 min Winter 14.278 0.0 6237.4 386 600 min Winter 10.300 0.0 6748.0 540 960 min Winter 1.929 <td>480 min Winter 50.775 0.875 109.6 4491.0 0 K 600 min Winter 50.760 0.860 108.6 4406.0 0 K 720 min Winter 50.741 0.841 107.5 4302.0 0 K 960 min Winter 50.797 104.9 4063.9 0 K 1440 min Winter 50.596 0.696 104.9 3520.3 0 K 2160 min Winter 50.453 0.553 104.9 2767.0 0 K 2880 min Winter 50.347 0.447 103.9 2221.2 0 K 4320 min Winter 50.206 0.306 79.5 1503.0 0 K 5760 min Winter 50.206 0.306 79.5 1503.0 0 K 240 min Winter 17.992 0.0 5893.0 342 480 min Winter 14.278 0.0 6237.4 386 600 min Winter 10.300 0.0 6748.0 540 960 min Winter 10.300 0.0 6748.0 540 960 min Winter 8.174 0.0 7135.9 692</td> <td>480 min Winter 50.775 0.875 109.6 4491.0 0 K 600 min Winter 50.760 0.860 108.6 4406.0 0 K 720 min Winter 50.797 104.9 4063.9 0 K 1440 min Winter 50.596 0.696 104.9 3520.3 0 K 1440 min Winter 50.453 0.553 104.9 2767.0 0 K 2800 min Winter 50.347 0.447 103.9 2221.2 0 K 4320 min Winter 50.206 0.306 79.5 1503.0 0 K 5760 min Winter 50.206 0.306 79.5 1503.0 0 K 5760 min Winter 17.992 0.0 5893.0 342 480 min Winter 14.278 0.0 6237.4 386 600 min Winter 11.929 0.0 6518.9 462 720 min Winter 10.300 0.0 6748.0 540 960 min Winter 10.300 0.0 6748.0 540 960 min Winter 10.300 0.0 6748.0 540 960 min Winter</td> <td>360</td> <td>min Winter</td> <td>50.790</td> <td>0.890</td> <td>110.5</td> <td>4572.2</td> <td>2 OK</td>	480 min Winter 50.775 0.875 109.6 4491.0 0 K 600 min Winter 50.760 0.860 108.6 4406.0 0 K 720 min Winter 50.741 0.841 107.5 4302.0 0 K 960 min Winter 50.797 104.9 4063.9 0 K 1440 min Winter 50.596 0.696 104.9 3520.3 0 K 2160 min Winter 50.453 0.553 104.9 2767.0 0 K 2880 min Winter 50.347 0.447 103.9 2221.2 0 K 4320 min Winter 50.206 0.306 79.5 1503.0 0 K 5760 min Winter 50.206 0.306 79.5 1503.0 0 K 240 min Winter 17.992 0.0 5893.0 342 480 min Winter 14.278 0.0 6237.4 386 600 min Winter 10.300 0.0 6748.0 540 960 min Winter 10.300 0.0 6748.0 540 960 min Winter 8.174 0.0 7135.9 692	480 min Winter 50.775 0.875 109.6 4491.0 0 K 600 min Winter 50.760 0.860 108.6 4406.0 0 K 720 min Winter 50.797 104.9 4063.9 0 K 1440 min Winter 50.596 0.696 104.9 3520.3 0 K 1440 min Winter 50.453 0.553 104.9 2767.0 0 K 2800 min Winter 50.347 0.447 103.9 2221.2 0 K 4320 min Winter 50.206 0.306 79.5 1503.0 0 K 5760 min Winter 50.206 0.306 79.5 1503.0 0 K 5760 min Winter 17.992 0.0 5893.0 342 480 min Winter 14.278 0.0 6237.4 386 600 min Winter 11.929 0.0 6518.9 462 720 min Winter 10.300 0.0 6748.0 540 960 min Winter 10.300 0.0 6748.0 540 960 min Winter 10.300 0.0 6748.0 540 960 min Winter	360	min Winter	50.790	0.890	110.5	4572.2	2 OK	
600 min Winter 50.760 0.860 108.6 4406.0 0 K 720 min Winter 50.741 0.841 107.5 4302.0 0 K 960 min Winter 50.697 0.797 104.9 4063.9 0 K 1440 min Winter 50.596 0.696 104.9 3520.3 0 K 1260 min Winter 50.453 0.553 104.9 2267.0 0 K 2880 min Winter 50.347 0.447 103.9 2221.2 0 K 4320 min Winter 50.245 0.345 93.7 1701.7 0 K 5760 min Winter 50.206 0.306 79.5 1503.0 0 K Kevent (mm/hr) Volume Volume (mins) (m³) (m³) 240 min Winter 17.992 0.0 5893.0 342 480 min Winter 14.278 0.0 6237.4 386 600 min Winter 11.929 0.0 6513.9 462 720 min Winter 10.300 0.0 6748.0 540 960 min Winter 4.308 0.0 8603.8 1364 280 min Winter 5.914 0.0 777.3 980 2160 min Winter 4.308 0.0 8603.8 1364 280 min Winter 2.582 0.0 10250.1 2344	600 min Winter 50.761 0.860 108.6 4406.0 0 K 720 min Winter 50.741 0.841 107.5 4302.0 0 K 960 min Winter 50.697 0.797 104.9 4063.9 0 K 1440 min Winter 50.596 0.696 104.9 3520.3 0 K 2160 min Winter 50.453 0.553 104.9 2767.0 0 K 280 min Winter 50.245 0.345 93.7 1701.7 0 K 4320 min Winter 50.206 0.306 79.5 1503.0 0 K 5760 min Winter 50.206 0.306 79.5 1503.0 0 K 5760 min Winter 17.992 0.0 5893.0 342 480 min Winter 14.278 0.0 6237.4 386 600 min Winter 10.300 0.6 6748.0 540 960 min Winter 10.300 0.0 6748.0 540 960 min Winter 10.300 0.0 6748.0 540 960 min Winter 10.300 0.0 6748.0 540 960 min Winter 3.174 0.0 7727.3 980 2160 min Winter 4.308 0.0 8603.8 1364 280 min Winter 2.582 0.0 10250.1 2344 5760 min Winter 2.123 0.0 11364.3 3064 <td>600 min Winter 50.741 0.860 108.6 4406.0 0 K 720 min Winter 50.741 0.841 107.5 4302.0 0 K 960 min Winter 50.697 0.797 104.9 4063.9 0 K 1440 min Winter 50.596 0.696 104.9 3520.3 0 K 2160 min Winter 50.453 0.553 104.9 2767.0 0 K 280 min Winter 50.245 0.347 0.447 103.9 2221.2 0 K 4320 min Winter 50.206 0.306 79.5 1503.0 0 K 5760 min Winter 50.206 0.306 79.5 1503.0 0 K 5760 min Winter 17.992 0.0 5893.0 342 480 min Winter 14.278 0.0 6237.4 386 600 min Winter 11.929 0.0 6513.9 462 720 min Winter 5.914 0.0 777.3 980 2160 min Winter 5.914 0.0 772.3 980 2160 min Winter 3.465 0.0 8603.8 1364 280 min Winter 2.582 0.0 10250.1 2344</td> <td>600 min Winter 50.760 0.860 108.6 4400.0 0 K 720 min Winter 50.7741 0.841 107.5 4302.0 0 K 960 min Winter 50.597 0.771 104.9 4063.9 0 K 1440 min Winter 50.596 0.696 104.9 3520.3 0 K 2160 min Winter 50.453 0.553 104.9 2767.0 0 K 2880 min Winter 50.347 0.447 103.9 2221.2 0 K 4320 min Winter 50.245 0.345 93.7 1701.7 0 K 5760 min Winter 50.206 0.306 79.5 1503.0 0 K Storm (mm/hr) Flooded Discharge Time-Peak Event (mm/hr) Volume (mins) (mins) (m³) (m³) (mins) (mins) 240 min Winter 14.278 0.0 5422.4 236 360 min Winter 11.929 0.0 5893.0 342 480 min Winter 14.278 0.0 6237.4 386 600 min Winter 10.300 <t< td=""><td>480</td><td>min Winter</td><td>50.775</td><td>0.875</td><td>109.6</td><td>4491.0</td><td>ОК</td></t<></td>	600 min Winter 50.741 0.860 108.6 4406.0 0 K 720 min Winter 50.741 0.841 107.5 4302.0 0 K 960 min Winter 50.697 0.797 104.9 4063.9 0 K 1440 min Winter 50.596 0.696 104.9 3520.3 0 K 2160 min Winter 50.453 0.553 104.9 2767.0 0 K 280 min Winter 50.245 0.347 0.447 103.9 2221.2 0 K 4320 min Winter 50.206 0.306 79.5 1503.0 0 K 5760 min Winter 50.206 0.306 79.5 1503.0 0 K 5760 min Winter 17.992 0.0 5893.0 342 480 min Winter 14.278 0.0 6237.4 386 600 min Winter 11.929 0.0 6513.9 462 720 min Winter 5.914 0.0 777.3 980 2160 min Winter 5.914 0.0 772.3 980 2160 min Winter 3.465 0.0 8603.8 1364 280 min Winter 2.582 0.0 10250.1 2344	600 min Winter 50.760 0.860 108.6 4400.0 0 K 720 min Winter 50.7741 0.841 107.5 4302.0 0 K 960 min Winter 50.597 0.771 104.9 4063.9 0 K 1440 min Winter 50.596 0.696 104.9 3520.3 0 K 2160 min Winter 50.453 0.553 104.9 2767.0 0 K 2880 min Winter 50.347 0.447 103.9 2221.2 0 K 4320 min Winter 50.245 0.345 93.7 1701.7 0 K 5760 min Winter 50.206 0.306 79.5 1503.0 0 K Storm (mm/hr) Flooded Discharge Time-Peak Event (mm/hr) Volume (mins) (mins) (m ³) (m ³) (mins) (mins) 240 min Winter 14.278 0.0 5422.4 236 360 min Winter 11.929 0.0 5893.0 342 480 min Winter 14.278 0.0 6237.4 386 600 min Winter 10.300 <t< td=""><td>480</td><td>min Winter</td><td>50.775</td><td>0.875</td><td>109.6</td><td>4491.0</td><td>ОК</td></t<>	480	min Winter	50.775	0.875	109.6	4491.0	ОК	
720 min Winter 50.741 0.797 104.9 4063.9 0 960 min Winter 50.596 0.696 104.9 3520.3 0 K 2160 min Winter 50.453 0.553 104.9 2767.0 0 K 2800 min Winter 50.347 0.447 103.9 2221.2 0 K 4320 min Winter 50.245 0.345 93.7 1701.7 0 K 5760 min Winter 50.206 0.306 79.5 1503.0 0 K 5760 min Winter 24.853 0.0 5422.4 236 360 min Winter 17.992 0.0 5893.0 342 480 min Winter 14.278 0.0 6237.4 386 600 min Winter 14.278 0.0 6513.9 462 720 min Winter 10.300 0.0 6748.0 540 960 min Winter 10.300 0.0 6748.0 540 960 min Winter 5.914 0.0 7727.3 980 2160 min Winter 3.465 0.0 9216.4 1704 </td <td>720 min Winter 50.741 0.041 0.041 107.3 4302.0 0 K 960 min Winter 50.697 0.797 104.9 4063.9 0 K 1440 min Winter 50.550 0.696 104.9 3520.3 0 K 2160 min Winter 50.453 0.553 104.9 2767.0 0 K 280 min Winter 50.347 0.447 103.9 2221.2 0 K 4320 min Winter 50.245 0.345 93.7 1701.7 0 K 5760 min Winter 50.206 0.306 79.5 1503.0 0 K Volume (mins) (m³) 240 min Winter 24.853 0.0 5422.4 236 360 min Winter 17.992 0.0 5893.0 342 480 min Winter 14.278 0.0 6237.4 386 600 min Winter 11.929 0.0 6513.9 462 720 min Winter 10.300 0.0 6748.0 540 960 min Winter 10.300 0.0 6748.0 540 960 min Winter 10.308 0.0 8603.8 1364 280 min Winter 5.914 0.0 7727.3 980 2160 min Winter 3.465 0.0 9216.4 1704 4320 min Winter 3.465 0.0 9216.4 1704 4320 min Winter 3.465 0.0 10250.1 2344</td> <td>960 min Winter 50.741 50.941 107.3 4302.0 0 K 960 min Winter 50.596 0.696 104.9 3520.3 0 K 2160 min Winter 50.453 0.553 104.9 2767.0 0 K 280 min Winter 50.347 0.447 103.9 2221.2 0 K 4320 min Winter 50.206 0.306 79.5 1503.0 0 K 5760 min Winter 50.206 0.306 79.5 1503.0 0 K 5760 min Winter 24.853 0.0 5422.4 236 360 min Winter 17.992 0.0 5893.0 342 480 min Winter 14.278 0.0 6237.4 386 600 min Winter 10.300 0.0 6748.0 540 960 min Winter 10.300 0.0 6748.0 540 960 min Winter 10.300 0.0 6748.0 540 960 min Winter 8.174 0.0 7727.3 980 2160 min Winter 3.465 0.0 8603.8 1364 280 min Winter 3.465</td> <td>720 min Winter 50.741 107.3 302.0 0 K 960 min Winter 50.697 0.797 104.9 4063.9 0 K 1440 min Winter 50.596 0.696 104.9 3520.3 0 K 2160 min Winter 50.453 0.553 104.9 2767.0 0 K 2800 min Winter 50.347 0.447 103.9 2221.2 0 K 4320 min Winter 50.206 0.306 79.5 1503.0 0 K 5760 min Winter 50.206 0.306 79.5 1503.0 0 K 5760 min Winter 24.853 0.0 5422.4 236 360 min Winter 17.992 0.0 5893.0 342 480 min Winter 14.278 0.0 6237.4 386 600 min Winter 11.929 0.0 6513.9 462 720 min Winter 10.300 0.0 6748.0 540 960 min Winter 10.300 0.0 6748.0 540 960 min Winter 10.308 0.0 803.8 1364 280 min Winter 5.914<td>600 720</td><td>min Winter</td><td>50.760</td><td>0.860</td><td>107 5</td><td>4406.0</td><td></td></td>	720 min Winter 50.741 0.041 0.041 107.3 4302.0 0 K 960 min Winter 50.697 0.797 104.9 4063.9 0 K 1440 min Winter 50.550 0.696 104.9 3520.3 0 K 2160 min Winter 50.453 0.553 104.9 2767.0 0 K 280 min Winter 50.347 0.447 103.9 2221.2 0 K 4320 min Winter 50.245 0.345 93.7 1701.7 0 K 5760 min Winter 50.206 0.306 79.5 1503.0 0 K Volume (mins) (m³) 240 min Winter 24.853 0.0 5422.4 236 360 min Winter 17.992 0.0 5893.0 342 480 min Winter 14.278 0.0 6237.4 386 600 min Winter 11.929 0.0 6513.9 462 720 min Winter 10.300 0.0 6748.0 540 960 min Winter 10.300 0.0 6748.0 540 960 min Winter 10.308 0.0 8603.8 1364 280 min Winter 5.914 0.0 7727.3 980 2160 min Winter 3.465 0.0 9216.4 1704 4320 min Winter 3.465 0.0 9216.4 1704 4320 min Winter 3.465 0.0 10250.1 2344	960 min Winter 50.741 50.941 107.3 4302.0 0 K 960 min Winter 50.596 0.696 104.9 3520.3 0 K 2160 min Winter 50.453 0.553 104.9 2767.0 0 K 280 min Winter 50.347 0.447 103.9 2221.2 0 K 4320 min Winter 50.206 0.306 79.5 1503.0 0 K 5760 min Winter 50.206 0.306 79.5 1503.0 0 K 5760 min Winter 24.853 0.0 5422.4 236 360 min Winter 17.992 0.0 5893.0 342 480 min Winter 14.278 0.0 6237.4 386 600 min Winter 10.300 0.0 6748.0 540 960 min Winter 10.300 0.0 6748.0 540 960 min Winter 10.300 0.0 6748.0 540 960 min Winter 8.174 0.0 7727.3 980 2160 min Winter 3.465 0.0 8603.8 1364 280 min Winter 3.465	720 min Winter 50.741 107.3 302.0 0 K 960 min Winter 50.697 0.797 104.9 4063.9 0 K 1440 min Winter 50.596 0.696 104.9 3520.3 0 K 2160 min Winter 50.453 0.553 104.9 2767.0 0 K 2800 min Winter 50.347 0.447 103.9 2221.2 0 K 4320 min Winter 50.206 0.306 79.5 1503.0 0 K 5760 min Winter 50.206 0.306 79.5 1503.0 0 K 5760 min Winter 24.853 0.0 5422.4 236 360 min Winter 17.992 0.0 5893.0 342 480 min Winter 14.278 0.0 6237.4 386 600 min Winter 11.929 0.0 6513.9 462 720 min Winter 10.300 0.0 6748.0 540 960 min Winter 10.300 0.0 6748.0 540 960 min Winter 10.308 0.0 803.8 1364 280 min Winter 5.914 <td>600 720</td> <td>min Winter</td> <td>50.760</td> <td>0.860</td> <td>107 5</td> <td>4406.0</td> <td></td>	600 720	min Winter	50.760	0.860	107 5	4406.0		
1440 min Winter 50.596 0.696 104.9 3520.3 0 K 2160 min Winter 50.453 0.553 104.9 2767.0 0 K 280 min Winter 50.347 0.447 103.9 2221.2 0 K 4320 min Winter 50.245 0.345 93.7 1701.7 0 K 5760 min Winter 50.206 0.306 79.5 1503.0 0 K Kevent (mm/hr) Volume Volume (mins) (m³) (m³) (mas) 342 480 min Winter 14.278 0.0 5422.4 236 360 min Winter 14.278 0.0 6237.4 386 600 min Winter 11.929 0.0 6513.9 462 720 min Winter 10.300 0.0 6748.0 540 960 min Winter 8.174 0.0 7135.9 692 1440 min Winter 5.914 0.0 7727.3 980 2160 min Winter 3.465 0.0 9216.4 1704 4320 min Winter 2.582 0.0 10250.1	1440 min Winter 50.596 0.696 104.9 3520.3 0 K 2160 min Winter 50.453 0.553 104.9 2767.0 0 K 2880 min Winter 50.347 0.447 103.9 2221.2 0 K 4320 min Winter 50.245 0.345 93.7 1701.7 0 K 5760 min Winter 50.206 0.306 79.5 1503.0 0 K Volume (mm/hr) Volume (m³) (m³) 240 min Winter 24.853 0.0 5422.4 236 360 min Winter 17.992 0.0 5893.0 342 480 min Winter 14.278 0.0 6237.4 386 600 min Winter 10.300 0.0 6748.0 540 960 min Winter 10.300 0.0 6748.0 540 960 min Winter 8.174 0.0 7135.9 692 1440 min Winter 5.914 0.0 7727.3 980 2160 min Winter 3.465 0.0 9216.4 1704 320 min Winter 2.582 0.0 <	1440 min Winter 50.596 0.696 104.9 3520.3 0 K 2160 min Winter 50.453 0.553 104.9 2767.0 0 K 2880 min Winter 50.347 0.447 103.9 2221.2 0 K 4320 min Winter 50.245 0.345 93.7 1701.7 0 K 5760 min Winter 50.206 0.306 79.5 1503.0 0 K Storm (mm/hr) Volume Volume (mins) (m³) (m³) (mas) 240 min Winter 17.992 0.0 5893.0 342 480 min Winter 14.278 0.0 6237.4 386 600 min Winter 10.300 0.0 6748.0 540 960 min Winter 8.174 0.0 7135.9 692 1440 min Winter 5.914 0.0 727.3 980 2160 min Winter 3.465 0.0 9216.4 1704 320 min Winter 2.582 0.0 10250.1 2344	1440 min Winter 50.596 0.696 104.9 3520.3 0 K 2160 min Winter 50.453 0.553 104.9 2767.0 0 K 2880 min Winter 50.347 0.447 103.9 2221.2 0 K 4320 min Winter 50.245 0.345 93.7 1701.7 0 K 5760 min Winter 50.206 0.306 79.5 1503.0 0 K Storm rem/rm Flooded Discharge Time-Peak (mm/hr) Event (mm/hr) Volume Volume (mins) (m³) (m³) 240 min Winter 14.278 0.0 5422.4 236 360 min Winter 17.992 0.0 5893.0 342 480 min Winter 14.278 0.0 6237.4 386 600 min Winter 10.300 0.0 6748.0 540 960 min Winter 10.300 0.0 6748.0 540 960 min Winter 5.914 0.0 7727.3 980 2160 min Winter 5.942 0.0 10250.1 2344 280 min Winter	960	min Winter	50.697	0.797	107.5	4063.9) OK	
2160 min Winter 50.453 0.553 104.9 2767.0 0 K 2880 min Winter 50.347 0.447 103.9 2221.2 0 K 4320 min Winter 50.245 0.345 93.7 1701.7 0 K 5760 min Winter 50.206 0.306 79.5 1503.0 0 K Kevent mm/hr) Volume Volume (mins) (m³) (m³) (m³) 240 240 min Winter 24.853 0.0 5422.4 236 360 min Winter 17.992 0.0 5893.0 342 480 min Winter 14.278 0.0 6237.4 386 600 min Winter 10.300 0.0 6748.0 540 960 min Winter 10.300 0.0 6748.0 540 960 min Winter 5.914 0.0 7727.3 980 2160 min Winter 3.465 0.0 9216.4 1704 280 min Winter 3.465 0.0 9216.4 1704	2160 min Winter 50.453 0.553 104.9 2767.0 0 K 2880 min Winter 50.347 0.447 103.9 2221.2 0 K 4320 min Winter 50.245 0.345 93.7 1701.7 0 K 5760 min Winter 50.206 0.306 79.5 1503.0 0 K Storm (mm/hr) Flooded Discharge Time-Peak Event (mm/hr) Volume (mins) (mins) (m³) (m³) (mins) 342 480 min Winter 17.992 0.0 5893.0 342 480 min Winter 14.278 0.0 6237.4 386 600 min Winter 10.300 0.0 6748.0 540 960 min Winter 8.174 0.0 7135.9 692 1440 min Winter 5.914 0.0 727.3 980 2160 min Winter 3.465 0.0 9216.4 1704 230 min Winter 2.582 0.0 10250.1 2344	2160 min Winter 50.453 0.553 104.9 2767.0 0 K 2880 min Winter 50.347 0.447 103.9 2221.2 0 K 4320 min Winter 50.245 0.345 93.7 1701.7 0 K 5760 min Winter 50.206 0.306 79.5 1503.0 0 K Storm Event Rain Flooded Discharge Time-Peak (mins) (m³) 240 min Winter 24.853 0.0 5422.4 236 360 min Winter 17.992 0.0 5893.0 342 480 min Winter 14.278 0.0 6237.4 386 600 min Winter 11.929 0.0 6713.9 462 720 min Winter 8.174 0.0 7135.9 692 1440 min Winter 5.914 0.0 7727.3 980 2160 min Winter 3.465 0.0 9216.4 1704 4320 min Winter 2.582 0.0 10250.1 2344	2160 min Winter 50.453 0.553 104.9 2767.0 0 K 2880 min Winter 50.347 0.447 103.9 2221.2 0 K 4320 min Winter 50.245 0.345 93.7 1701.7 0 K 5760 min Winter 50.206 0.306 79.5 1503.0 0 K Kevent Kein Flooded Discharge Time-Peak (mins) (m³) (m³) (m³) (mins) 240 min Winter 24.853 0.0 5422.4 236 360 min Winter 17.992 0.0 5893.0 342 480 min Winter 14.278 0.0 6237.4 386 600 min Winter 10.300 0.0 6748.0 540 960 min Winter 10.300 0.0 6748.0 540 960 min Winter 5.914 0.0 7135.9 692 1440 min Winter 5.914 0.0 727.3 980 2160 min Winter 3.465 0.0 9216.4 1704 4320 min Winter 2.582 0.0 10250.1 2344	1440	min Winter	50.596	0.696	104.9	3520.3	3 O K	
2880 min Winter 50.347 0.447 103.9 2221.2 0 K 4320 min Winter 50.245 0.345 93.7 1701.7 0 K 5760 min Winter 50.206 0.306 79.5 1503.0 0 K Kevent Flooded Discharge Time-Peak Event Volume Volume (mins) (m³) (m³) (m³) 240 min Winter 24.853 0.0 5422.4 236 360 min Winter 17.992 0.0 5893.0 342 480 min Winter 14.278 0.0 6237.4 386 600 min Winter 11.929 0.0 6513.9 462 720 min Winter 10.300 0.0 6748.0 540 960 min Winter 8.174 0.0 7135.9 692 1440 min Winter 5.914 0.0 7727.3 980 2160 min Winter 3.465 0.0 8603.8 1364 280 min Winter 3.465 0.0 9216.4 1704 2320 min Winter 2.582 0.0 10250.1 </td <td>2880 min Winter 50.347 0.447 103.9 2221.2 0 K 4320 min Winter 50.245 0.345 93.7 1701.7 0 K 5760 min Winter 50.206 0.306 79.5 1503.0 0 K Storm (mm/hr) Flooded Discharge Time-Peak Event (mm/hr) Volume Volume (mins) (m³) (m³) (m³) 240 min Winter 24.853 0.0 5422.4 236 360 min Winter 17.992 0.0 5893.0 342 480 min Winter 14.278 0.0 6237.4 386 600 min Winter 10.300 0.0 6748.0 540 960 min Winter 8.174 0.0 7135.9 692 1440 min Winter 5.914 0.0 7727.3 980 2160 min Winter 3.465 0.0 9216.4 1704 4320 min Winter 2.582 0.0 10250.1 2344 5760 min Winter 2.123 0.0 11364.3 3064 </td> <td>2880 min Winter 50.347 0.447 103.9 2221.2 0 K 4320 min Winter 50.245 0.345 93.7 1701.7 0 K 5760 min Winter 50.206 0.306 79.5 1503.0 0 K Storm Rain Flooded Discharge Time-Peak (mm/hr) Event Volume (m³) (mins) (m³) (m³) (mins) 240 min Winter 24.853 0.0 5422.4 236 360 min Winter 17.992 0.0 5893.0 342 480 min Winter 14.278 0.0 6237.4 386 600 min Winter 11.929 0.0 6513.9 462 720 min Winter 10.300 0.0 6748.0 540 960 min Winter 8.174 0.0 7135.9 692 1440 min Winter 5.914 0.0 7727.3 980 2160 min Winter 3.465 0.0 9216.4 1704 4320 min Winter 2.582 0.0 10250.1 2344 5760 min Winter 2.123 0.0 11364.3 3064</td> <td>2880 min Winter 50.347 0.447 103.9 2221.2 0 K 4320 min Winter 50.245 0.345 93.7 1701.7 0 K 5760 min Winter 50.206 0.306 79.5 1503.0 0 K Kein Flooded Discharge Time-Peak (mins) Event (m³) (m³) (mins) 240 min Winter 24.853 0.0 5422.4 236 360 min Winter 17.992 0.0 5893.0 342 480 min Winter 14.278 0.0 6237.4 386 600 min Winter 10.300 0.0 6748.0 540 960 min Winter 10.300 0.0 6748.0 540 960 min Winter 5.914 0.0 7135.9 692 1440 min Winter 5.914 0.0 7727.3 980 2160 min Winter 3.465 0.0 9216.4 1704 4320 min Winter 2.582 0.0 10250.1 2344 5760 min Winter 2.123 0.0 11364.3 3064 </td> <td>2160</td> <td>min Winter</td> <td>50.453</td> <td>0.553</td> <td>104.9</td> <td>2767.0</td> <td>о к</td>	2880 min Winter 50.347 0.447 103.9 2221.2 0 K 4320 min Winter 50.245 0.345 93.7 1701.7 0 K 5760 min Winter 50.206 0.306 79.5 1503.0 0 K Storm (mm/hr) Flooded Discharge Time-Peak Event (mm/hr) Volume Volume (mins) (m³) (m³) (m³) 240 min Winter 24.853 0.0 5422.4 236 360 min Winter 17.992 0.0 5893.0 342 480 min Winter 14.278 0.0 6237.4 386 600 min Winter 10.300 0.0 6748.0 540 960 min Winter 8.174 0.0 7135.9 692 1440 min Winter 5.914 0.0 7727.3 980 2160 min Winter 3.465 0.0 9216.4 1704 4320 min Winter 2.582 0.0 10250.1 2344 5760 min Winter 2.123 0.0 11364.3 3064	2880 min Winter 50.347 0.447 103.9 2221.2 0 K 4320 min Winter 50.245 0.345 93.7 1701.7 0 K 5760 min Winter 50.206 0.306 79.5 1503.0 0 K Storm Rain Flooded Discharge Time-Peak (mm/hr) Event Volume (m³) (mins) (m³) (m³) (mins) 240 min Winter 24.853 0.0 5422.4 236 360 min Winter 17.992 0.0 5893.0 342 480 min Winter 14.278 0.0 6237.4 386 600 min Winter 11.929 0.0 6513.9 462 720 min Winter 10.300 0.0 6748.0 540 960 min Winter 8.174 0.0 7135.9 692 1440 min Winter 5.914 0.0 7727.3 980 2160 min Winter 3.465 0.0 9216.4 1704 4320 min Winter 2.582 0.0 10250.1 2344 5760 min Winter 2.123 0.0 11364.3 3064	2880 min Winter 50.347 0.447 103.9 2221.2 0 K 4320 min Winter 50.245 0.345 93.7 1701.7 0 K 5760 min Winter 50.206 0.306 79.5 1503.0 0 K Kein Flooded Discharge Time-Peak (mins) Event (m³) (m³) (mins) 240 min Winter 24.853 0.0 5422.4 236 360 min Winter 17.992 0.0 5893.0 342 480 min Winter 14.278 0.0 6237.4 386 600 min Winter 10.300 0.0 6748.0 540 960 min Winter 10.300 0.0 6748.0 540 960 min Winter 5.914 0.0 7135.9 692 1440 min Winter 5.914 0.0 7727.3 980 2160 min Winter 3.465 0.0 9216.4 1704 4320 min Winter 2.582 0.0 10250.1 2344 5760 min Winter 2.123 0.0 11364.3 3064	2160	min Winter	50.453	0.553	104.9	2767.0	о к	
4320 min Winter 50.245 0.345 93.7 1701.7 0 K 5760 min Winter 50.206 0.306 79.5 1503.0 0 K Storm Rain Flooded Discharge Time-Peak (mm/hr) Event (mm/hr) Volume Volume (mins) (m³) 240 min Winter 24.853 0.0 5422.4 236 360 min Winter 17.992 0.0 5893.0 342 480 min Winter 14.278 0.0 6237.4 386 600 min Winter 10.300 0.0 6748.0 540 960 min Winter 8.174 0.0 7135.9 692 1440 min Winter 5.914 0.0 727.3 980 2160 min Winter 3.465 0.0 9216.4 1704 320 min Winter 2.582 0.0 10250.1 2344	4320 min Winter 50.245 0.345 93.7 1701.7 0 K 5760 min Winter 50.206 0.306 79.5 1503.0 0 K Storm Event Rain (mm/hr) Flooded Discharge Time-Peak (mins) (m³) 240 min Winter 24.853 0.0 5422.4 236 360 min Winter 17.992 0.0 5893.0 342 480 min Winter 14.278 0.0 6237.4 386 600 min Winter 11.929 0.0 6513.9 462 720 min Winter 10.300 0.0 7135.9 692 1440 min Winter 5.914 0.0 7727.3 980 2160 min Winter 3.465 0.0 9216.4 1704 320 min Winter 3.465 0.0 10250.1 2344	4320 min Winter 50.245 0.345 93.7 1701.7 0 K 5760 min Winter 50.206 0.306 79.5 1503.0 0 K Storm Rain (mm/hr) Flooded Discharge Time-Peak (mins) (m³) Event Volume (m³) Volume (mins) (m³) 240 min Winter 24.853 0.0 5422.4 236 360 min Winter 17.992 0.0 5893.0 342 480 min Winter 14.278 0.0 6237.4 386 600 min Winter 10.300 0.0 6748.0 540 960 min Winter 10.300 0.0 6748.0 540 960 min Winter 5.914 0.0 727.3 980 2160 min Winter 3.465 0.0 8603.8 1364 280 min Winter 3.465 0.0 9216.4 1704 4320 min Winter 2.123 0.0 11364.3 3064	4320 min Winter 50.245 0.345 93.7 1701.7 0 K 5760 min Winter 50.206 0.306 79.5 1503.0 0 K Storm Event (mm/hr) Volume Volume (m³) 240 min Winter 24.853 0.0 5422.4 236 360 min Winter 17.992 0.0 5893.0 342 480 min Winter 14.278 0.0 6237.4 386 600 min Winter 10.300 0.0 6748.0 540 960 min Winter 10.300 0.0 6748.0 540 960 min Winter 8.174 0.0 7135.9 692 1440 min Winter 5.914 0.0 727.3 980 2160 min Winter 3.465 0.0 9216.4 1704 4320 min Winter 2.582 0.0 10250.1 2344 5760 min Winter 2.123 0.0 11364.3 3064	2880	min Winter	50.347	0.447	103.9	2221.2	с ок	
Storm Rain Flooded Discharge Time-Peak Event (mm/hr) Volume Volume (mins) (m³) (m³) (m³) 240 min Winter 24.853 0.0 5422.4 236 360 min Winter 17.992 0.0 5893.0 342 480 min Winter 14.278 0.0 6237.4 386 600 min Winter 10.300 0.0 6748.0 540 960 min Winter 8.174 0.0 7135.9 692 1440 min Winter 5.914 0.0 7727.3 980 2160 min Winter 3.465 0.0 9216.4 1704 4320 min Winter 2.582 0.0 10250.1 2344	Storm Rain Flooded Discharge Time-Peak Event (mm/hr) Volume Volume (mins) (m³) (m³) (m³) 240 min Winter 24.853 0.0 5422.4 236 360 min Winter 17.992 0.0 5893.0 342 480 min Winter 14.278 0.0 6237.4 386 600 min Winter 10.300 0.0 6748.0 540 960 min Winter 8.174 0.0 7135.9 692 1440 min Winter 5.914 0.0 7727.3 980 2160 min Winter 3.465 0.0 9216.4 1704 4320 min Winter 2.582 0.0 10250.1 2344 5760 min Winter 2.123 0.0 11364.3 3064	Storm Rain Flooded Discharge Time-Peak Event (mm/hr) Volume Volume (mins) (m³) (m³) (m³) 240 240 min Winter 24.853 0.0 5422.4 236 360 min Winter 17.992 0.0 5893.0 342 480 min Winter 14.278 0.0 6237.4 386 600 min Winter 10.300 0.0 6748.0 540 960 min Winter 5.914 0.0 7135.9 692 1440 min Winter 5.914 0.0 7277.3 980 2160 min Winter 3.465 0.0 9216.4 1704 4320 min Winter 2.582 0.0 10250.1 2344 5760 min Winter 2.123 0.0 11364.3 3064	Storm Rain Flooded Discharge Time-Peak Volume Time-Peak (mins) 240 min Winter 24.853 0.0 5422.4 236 360 min Winter 17.992 0.0 5893.0 342 480 min Winter 14.278 0.0 6237.4 386 600 min Winter 11.929 0.0 6513.9 462 720 min Winter 10.300 0.0 6748.0 540 960 min Winter 5.914 0.0 7135.9 692 1440 min Winter 3.465 0.0 9216.4 1704 4320 min Winter 2.582 0.0 10250.1 2344 5760 min Winter 2.123 0.0 11364.3 3064	4320	min Winter	50.245	0.345	93.7	1701.7	OK	
Event(mm/hr)VolumeVolume(mins)(m³)(m³)(m³)(mins)240minWinter24.8530.05422.4236360minWinter17.9920.05893.0342480minWinter14.2780.06237.4386600minWinter11.9290.06513.9462720minWinter10.3000.06748.0540960minWinter8.1740.07135.96921440minWinter5.9140.07727.39802160minWinter3.4650.09216.417044320minWinter2.5820.010250.12344	Event(mm/hr)Volume (m³)Volume (m³)(mins)240minWinter24.8530.05422.4236360minWinter17.9920.05893.0342480minWinter14.2780.06237.4386600minWinter11.9290.06513.9462720minWinter10.3000.06748.0540960minWinter8.1740.07135.96921440minWinter5.9140.07727.39802160minWinter3.4650.09216.417044320minWinter2.5820.010250.123445760minWinter2.1230.011364.33064	Event(mm/hr)Volume (m³)Volume (m³)(mins)240minWinter24.8530.05422.4236360minWinter17.9920.05893.0342480minWinter14.2780.06237.4386600minWinter11.9290.06513.9462720minWinter10.3000.06748.0540960minWinter8.1740.07135.96921440minWinter5.9140.07727.39802160minWinter3.4650.09216.417044320minWinter2.5820.010250.123445760minWinter2.1230.011364.33064	Event(mm/hr)Volume (m³)Volume (m³)(mins)240minWinter24.8530.05422.4236360minWinter17.9920.05893.0342480minWinter14.2780.06237.4386600minWinter11.9290.06513.9462720minWinter10.3000.06748.0540960minWinter8.1740.07135.96921440minWinter5.9140.07727.39802160minWinter3.4650.09216.417044320minWinter2.5820.010250.123445760minWinter2.1230.011364.33064		Storm	Rain	Flood	ed Disch	narge T	ime-Peak	
(m ³) (m ³) 240 min Winter 24.853 0.0 5422.4 236 360 min Winter 17.992 0.0 5893.0 342 480 min Winter 14.278 0.0 6237.4 386 600 min Winter 11.929 0.0 6513.9 462 720 min Winter 10.300 0.0 6748.0 540 960 min Winter 8.174 0.0 7135.9 692 1440 min Winter 5.914 0.0 7727.3 980 2160 min Winter 4.308 0.0 8603.8 1364 2880 min Winter 3.465 0.0 9216.4 1704 4320 min Winter 2.582 0.0 10250.1 2344	(m ³) (m ³) 240 min Winter 24.853 0.0 5422.4 236 360 min Winter 17.992 0.0 5893.0 342 480 min Winter 14.278 0.0 6237.4 386 600 min Winter 11.929 0.0 6513.9 462 720 min Winter 10.300 0.0 6748.0 540 960 min Winter 8.174 0.0 7135.9 692 1440 min Winter 5.914 0.0 7727.3 980 2160 min Winter 4.308 0.0 8603.8 1364 2880 min Winter 3.465 0.0 9216.4 1704 4320 min Winter 2.582 0.0 10250.1 2344 5760 min Winter 2.123 0.0 11364.3 3064	(m³) (m³) 240 min Winter 24.853 0.0 5422.4 236 360 min Winter 17.992 0.0 5893.0 342 480 min Winter 14.278 0.0 6237.4 386 600 min Winter 11.929 0.0 6513.9 462 720 min Winter 10.300 0.0 6748.0 540 960 min Winter 8.174 0.0 7135.9 692 1440 min Winter 5.914 0.0 7727.3 980 2160 min Winter 4.308 0.0 8603.8 1364 2880 min Winter 3.465 0.0 9216.4 1704 4320 min Winter 2.582 0.0 10250.1 2344 5760 min Winter 2.123 0.0 11364.3 3064	(m ³) (m ³) 240 min Winter 24.853 0.0 5422.4 236 360 min Winter 17.992 0.0 5893.0 342 480 min Winter 14.278 0.0 6237.4 386 600 min Winter 11.929 0.0 6513.9 462 720 min Winter 10.300 0.0 6748.0 540 960 min Winter 8.174 0.0 7135.9 692 1440 min Winter 5.914 0.0 7727.3 980 2160 min Winter 4.308 0.0 8603.8 1364 2880 min Winter 3.465 0.0 9216.4 1704 4320 min Winter 2.582 0.0 10250.1 2344 5760 min Winter 2.123 0.0 11364.3 3064		Event	(mm/hr)	Volum	ne Volu	ume	(mins)	
240 min Winter24.8530.05422.4236360 min Winter17.9920.05893.0342480 min Winter14.2780.06237.4386600 min Winter11.9290.06513.9462720 min Winter10.3000.06748.0540960 min Winter8.1740.07135.96921440 min Winter5.9140.07727.39802160 min Winter3.4650.08603.81364280 min Winter2.5820.010250.12344	240 min Winter24.8530.05422.4236360 min Winter17.9920.05893.0342480 min Winter14.2780.06237.4386600 min Winter11.9290.06513.9462720 min Winter10.3000.06748.0540960 min Winter8.1740.07135.96921440 min Winter5.9140.07727.39802160 min Winter3.4650.09216.417044320 min Winter2.5820.010250.123445760 min Winter2.1230.011364.33064	240 min Winter24.8530.05422.4236360 min Winter17.9920.05893.0342480 min Winter14.2780.06237.4386600 min Winter11.9290.06513.9462720 min Winter10.3000.06748.0540960 min Winter8.1740.07135.96921440 min Winter5.9140.07727.39802160 min Winter3.4650.09216.417044320 min Winter2.5820.010250.123445760 min Winter2.1230.011364.33064	240 min Winter24.8530.05422.4236360 min Winter17.9920.05893.0342480 min Winter14.2780.06237.4386600 min Winter11.9290.06513.9462720 min Winter10.3000.06748.0540960 min Winter8.1740.07135.96921440 min Winter5.9140.07727.39802160 min Winter3.4650.08603.813642880 min Winter3.4650.09216.417044320 min Winter2.5820.010250.123445760 min Winter2.1230.011364.33064				(m³)	(m	3)		
360 min Winter17.9920.05893.0342480 min Winter14.2780.06237.4386600 min Winter11.9290.06513.9462720 min Winter10.3000.06748.0540960 min Winter8.1740.07135.96921440 min Winter5.9140.07727.39802160 min Winter3.4650.08603.813642880 min Winter2.5820.010250.12344	360 min Winter17.9920.05893.0342480 min Winter14.2780.06237.4386600 min Winter11.9290.06513.9462720 min Winter10.3000.06748.0540960 min Winter8.1740.07135.96921440 min Winter5.9140.07727.39802160 min Winter3.4650.08603.813642880 min Winter3.4650.010250.123445760 min Winter2.1230.011364.33064	360 min Winter17.9920.05893.0342480 min Winter14.2780.06237.4386600 min Winter11.9290.06513.9462720 min Winter10.3000.06748.0540960 min Winter8.1740.07135.96921440 min Winter5.9140.07727.39802160 min Winter3.4650.08603.813642880 min Winter3.4650.09216.417044320 min Winter2.5820.010250.123445760 min Winter2.1230.011364.33064	360 min Winter17.9920.05893.0342480 min Winter14.2780.06237.4386600 min Winter11.9290.06513.9462720 min Winter10.3000.06748.0540960 min Winter8.1740.07135.96921440 min Winter5.9140.07727.39802160 min Winter4.3080.08603.813642880 min Winter3.4650.09216.417044320 min Winter2.5820.010250.123445760 min Winter2.1230.011364.33064	240	min Winter	24.853	3 0	.0 54	122.4	236	
480 min Winter14.2780.06237.4386600 min Winter11.9290.06513.9462720 min Winter10.3000.06748.0540960 min Winter8.1740.07135.96921440 min Winter5.9140.07727.39802160 min Winter4.3080.08603.813642880 min Winter3.4650.09216.417044320 min Winter2.5820.010250.12344	480 min Winter14.2780.06237.4386600 min Winter11.9290.06513.9462720 min Winter10.3000.06748.0540960 min Winter8.1740.07135.96921440 min Winter5.9140.07727.39802160 min Winter3.4650.08603.813642880 min Winter3.4650.09216.417044320 min Winter2.5820.010250.123445760 min Winter2.1230.011364.33064	480 min Winter14.2780.06237.4386600 min Winter11.9290.06513.9462720 min Winter10.3000.06748.0540960 min Winter8.1740.07135.96921440 min Winter5.9140.07727.39802160 min Winter3.4650.08603.813642800 min Winter2.5820.010250.123445760 min Winter2.1230.011364.33064	480 min Winter14.2780.06237.4386600 min Winter11.9290.06513.9462720 min Winter10.3000.06748.0540960 min Winter8.1740.07135.96921440 min Winter5.9140.07727.39802160 min Winter4.3080.08603.813642880 min Winter3.4650.09216.417044320 min Winter2.5820.010250.123445760 min Winter2.1230.011364.33064	360	min Winter	17.992	2 0	.0 58	393.0	342	
600 min Winter11.9290.06513.9462720 min Winter10.3000.06748.0540960 min Winter8.1740.07135.96921440 min Winter5.9140.07727.39802160 min Winter4.3080.08603.813642880 min Winter3.4650.09216.417044320 min Winter2.5820.010250.12344	800 min Winter11.9290.06513.9462720 min Winter10.3000.06748.0540960 min Winter8.1740.07135.96921440 min Winter5.9140.07727.39802160 min Winter4.3080.08603.813642880 min Winter3.4650.09216.417044320 min Winter2.5820.010250.123445760 min Winter2.1230.011364.33064	600 min Winter11.9290.06513.9462720 min Winter10.3000.06748.0540960 min Winter8.1740.07135.96921440 min Winter5.9140.07727.39802160 min Winter4.3080.08603.813642880 min Winter3.4650.09216.417044320 min Winter2.5820.010250.123445760 min Winter2.1230.011364.33064	600 min Winter11.9290.06513.9462720 min Winter10.3000.06748.0540960 min Winter8.1740.07135.96921440 min Winter5.9140.07727.39802160 min Winter4.3080.08603.813642880 min Winter3.4650.09216.417044320 min Winter2.5820.010250.123445760 min Winter2.1230.011364.33064	480	min Winter	14.278	3 0	.0 62	237.4	386	
960 min Winter8.1740.07135.96921440 min Winter5.9140.07727.39802160 min Winter4.3080.08603.813642880 min Winter3.4650.09216.417044320 min Winter2.5820.010250.12344	960 min Winter8.1740.07135.96921440 min Winter5.9140.07727.39802160 min Winter4.3080.08603.813642880 min Winter3.4650.09216.417044320 min Winter2.5820.010250.123445760 min Winter2.1230.011364.33064	960 min Winter8.1740.07135.96921440 min Winter5.9140.07727.39802160 min Winter4.3080.08603.813642880 min Winter3.4650.09216.417044320 min Winter2.5820.010250.123445760 min Winter2.1230.011364.33064	960 min Winter 8.174 0.0 7135.9 692 1440 min Winter 5.914 0.0 7727.3 980 2160 min Winter 4.308 0.0 8603.8 1364 2880 min Winter 3.465 0.0 9216.4 1704 4320 min Winter 2.582 0.0 10250.1 2344 5760 min Winter 2.123 0.0 11364.3 3064	600 720	min Winter	10 300	y 0) ∩	.0 65	013.9 748 0	462 540	
1440 min Winter5.9140.07727.39802160 min Winter4.3080.08603.813642880 min Winter3.4650.09216.417044320 min Winter2.5820.010250.12344	1440 min Winter5.9140.07727.39802160 min Winter4.3080.08603.813642880 min Winter3.4650.09216.417044320 min Winter2.5820.010250.123445760 min Winter2.1230.011364.33064	1440 min Winter5.9140.07727.39802160 min Winter4.3080.08603.813642880 min Winter3.4650.09216.417044320 min Winter2.5820.010250.123445760 min Winter2.1230.011364.33064	1440 min Winter 5.914 0.0 7727.3 980 2160 min Winter 4.308 0.0 8603.8 1364 2880 min Winter 3.465 0.0 9216.4 1704 4320 min Winter 2.582 0.0 10250.1 2344 5760 min Winter 2.123 0.0 11364.3 3064	960	min Winter	8.174	, 0 1 0	.0 71	35.9	692	
2160 min Winter4.3080.08603.813642880 min Winter3.4650.09216.417044320 min Winter2.5820.010250.12344	2160 min Winter4.3080.08603.813642880 min Winter3.4650.09216.417044320 min Winter2.5820.010250.123445760 min Winter2.1230.011364.33064	2160 min Winter4.3080.08603.813642880 min Winter3.4650.09216.417044320 min Winter2.5820.010250.123445760 min Winter2.1230.011364.33064	2160 min Winter4.3080.08603.813642880 min Winter3.4650.09216.417044320 min Winter2.5820.010250.123445760 min Winter2.1230.011364.33064	1440	min Winter	5.914	ŧ 0	.0 77	127.3	980	
2880 min Winter3.4650.09216.417044320 min Winter2.5820.010250.12344	2880 min Winter3.4650.09216.417044320 min Winter2.5820.010250.123445760 min Winter2.1230.011364.33064	2880 min Winter3.4650.09216.417044320 min Winter2.5820.010250.123445760 min Winter2.1230.011364.33064	2880 min Winter 3.465 0.0 9216.4 1704 4320 min Winter 2.582 0.0 10250.1 2344 5760 min Winter 2.123 0.0 11364.3 3064	2160	min Winter	4.308	3 0	.0 86	503.8	1364	
4320 min Winter 2.582 0.0 10250.1 2344	4320 min Winter2.5820.010250.123445760 min Winter2.1230.011364.33064	4320 min Winter 2.582 0.0 10250.1 2344 5760 min Winter 2.123 0.0 11364.3 3064	4320 min Winter 2.582 0.0 10250.1 2344 5760 min Winter 2.123 0.0 11364.3 3064	2880	min Winter	3.465	5 0	.0 92	216.4	1704	
F7C0 min Minter 0 100 0 0 110C4 0 20C4	5760 min Winter 2.123 0.0 11364.3 3064	5760 min Winter 2.123 0.0 11364.3 3064	5760 min winter 2.123 0.0 11364.3 3064	4320	min Winter	2.582	2 0	.0 102	250.1	2344	
5760 min Winter 2.123 0.0 11364.3 3064				5760	min winter	2.123	5 0	.0 113	364.3	3064	

Mott MacDonald Pvt Ltd		Page 3
Unit No. 101, 1st Floor, Nom		
Hiranandani Garden, Powai, M		
Maharashtrs, 400076 India		Mirro
Date 9/12/2024 10:56 AM	Designed by NAI101538	Nainane
File AT01 Pond.SRCX	Drainage	
Innovyze	Source Control 2020.1.3	
Pa	infall Details	
<u>Na</u>	IIIall Details	
Rainfall Mode	el FEH	
Return Period (years	5) 200	
FEH Rainfall Versio	on	
Data Typ	pe Point	
Summer Storr	ns Yes	
Winter Storr Cv (Summer	ns Yes c) 0.750	
Cv (Winter	c) 1.000	
Shortest Storm (mins	5) 15	
Longest Storm (mins Climate Change	5) 5/60 % +48	
Tin	<u>ne Area Diagram</u>	
Tota	al Area (ba) 5 601	
Time (mins) Area Ti From: To: (ha) Fr	me (mins) Area Time (mins) Area om: To: (ha) From: To: (ha)	
0 4 1.867	4 8 1.867 8 12 1.867	
©198	32-2020 Innovyze	

Mott MacDonald Pvt Ltd			Page 4					
Unit No. 101, 1st Floor, Nom								
Hiranandani Garden, Powai, M								
Maharashtrs, 400076 India			Micco					
Date 9/12/2024 10:56 AM								
File AT01 Pond.SRCX	Diamacje							
Innovyze								
<u>M</u>	<u>Iodel Details</u>							
Storage is On	line Cover Level	(m) 51.100						
Tank	or Pond Structu	ire						
Inver	t Level (m) 49.90	00						
Depth (m) Area (m²) Dep	oth (m) Area (m²)	Depth (m) Area (m ²)						
0.000 4800.0	0.800 5407.5	1.100 5644.7						
Hydro-Brake®	Optimum Outflo	<u>ow Control</u>						
Unit	Reference MD-SHE	-0407-1050-0800-1050						
Desig	n Head (m)	0.800						
Design	Flow (l/s) Flush-Flom	105.0						
	Objective Minim	ise upstream storage						
A	pplication	Surface						
Sump	Available	Yes						
D1a: Invert	meter (mm) Level (m)	407 49.900						
Minimum Outlet Pipe Dia	meter (mm)	450						
Suggested Manhole Dia	meter (mm)	2100						
Control Po:	ints Head (m	n) Flow (l/s)						
Design Point (Ca	lculated) 0.80	104.9						
F	'lush-Flo™ 0.53	104.9						
Mean Flow over H	Kick-Flo® 0.73	30 100.4						
Healt Flow Over 1.	leau Nalige	11.5						
The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated								
Depth (m) Flow (1/s) Depth (m) Flow	7 (1/s) Depth (m)	Flow (1/s) Depth (m) Flow (1/s)					
0.100 11.1 1.200	127.8 3.000	199.9 7.00	0 302.9					
0.200 39.9 1.400	147 0 3.500	215.5 7.50	U 313.4 0 323.5					
0.400 102.4 1.800	155.7 4.000	243.8 8.50	0 329.5					
0.500 104.8 2.000	163.9 5.000	256.8 9.00	0 339.3					
0.600 104.4 2.200	171.7 5.500	269.1 9.50	0 348.8					
0.800 104.9 2.400	179.2 6.000	280.8						
1.000 110.3 2.000	100.3 0.300	292.1						
©198	2-2020 Innovyz	е						

Mott MacDonald Pvt Ltd						Page 1
Unit No. 101, 1st Floor, Nom						
Hiranandani Garden, Powai, M						
Maharashtrs, 400076 India						Micco
Date 9/12/2024 11.04 AM	De	signe	d by N	AT1015	38	
File ATO1 Pond SPCY	Ch	ockod	by h	1111010		Drainage
		eckec		1 2020	1 0	
Innovyze	50	urce	Contro	1 2020	.1.3	
		1 0 0 0	_			
<u>Summary of Result</u>	<u>s ior .</u>	1000	<u>year R</u>	eturn I	Period (+48%)	
8to	Mass	Mass	Man	Man	<u>Ototuo</u>	
Event	Max Level 1	Max	Control	Max	Status	
livenc	(m)	(m)	(1/s)	(m ³)		
15 min Summer	50.277	0.377	101.4	1863.3	O K	
30 min Summer	50.456	0.556	104.9	2785.3	ОК	
60 min Summer 120 min Summer	50.680 50 744	0.780	104.9	39/1.8 4317 3	O K O K	
180 min Summer	50.763	0.863	108.8	4422.6	0 K	
240 min Summer	50.765	0.865	109.0	4434.9	O K	
360 min Summer	50.752	0.852	108.2	4364.1	O K	
480 min Summer	50.738	0.838	107.3	4288.2	ОК	
600 min Summer	50.724	0.824	106.4	4209.1	OK	
960 min Summer	50.675	0.000	103.4	3944.9	O K O K	
1440 min Summer	50.603	0.703	104.9	3557.7	0 K	
2160 min Summer	50.502	0.602	104.9	3027.0	O K	
2880 min Summer	50.423	0.523	104.9	2611.7	O K	
4320 min Summer	50.317	0.417	103.0	2068.3	ОК	
5760 min Summer	50.262	0.362	99.2 104 8	2/86.9	OK	
30 min Winter	50.639	0.739	104.9	3751.4	O K	
60 min Winter	50.930	1.030	118.6	5345.2	Flood Risk	
120 min Winter	51.018	1.118	123.4	5842.6	Flood Risk	
180 min Winter	51.050	1.150	125.2	6023.0	Flood Risk	
Storm	Pain	Flo	adad Dia	charge	Time-Deak	
Event	(mm/hr	c) Vol	ume V	olume	(mins)	
	(/	., .c= (n	1 ³)	(m ³)	(
15 min Summe	r 184.23	30	0.0	1710.8	25	
30 min Summe	r 139.17 r 100 65	19 55	0.0	26/1.9 4098 1	4 U 6 8	
120 min Summe	r 57.21		0.0	4670.7	126	
180 min Summe	r 40.88	37	0.0	5012.0	184	
240 min Summe	r 32.18	33	0.0	5263.1	242	
360 min Summe	r 22.97	17	0.0	5639.9	312	
480 min Summe	r 18.09	13 27	0.0	5922.5	372	
720 min Summe	r 12.03	57 32	0.0	0102.3 6347 7	430 504	
960 min Summe	r 10.20)4	0.0	6673.4	640	
1440 min Summe	r 7.32	28	0.0	7171.8	912	
2160 min Summe	r 5.30)6	0.0	7940.4	1296	
2880 min Summe	r 4.25	52 50	0.0	8474.7	1652	
4320 min Summe 5760 min Summe	r 3.16 r 2.50	90 96		9394.3 10417 7	∠344 3048	
15 min Winte	r 184.23	30	0.0	2339.3	26	
30 min Winte	r 139.17	79	0.0	3612.9	40	
60 min Winte	r 100.65	55	0.0	5495.9	68	
120 min Winte	r 57.21	17	0.0	6259.4	124	
180 min Winte	r 40.88	5 /	0.0	6/14.5	182	
	©1982-	2020	Innovy	ze		
	U + 2 U L 4		v y			

	L					
it No. 101, 1st Floo	or, Nom					
ranandani Garden, Po	wai, M					
harashtrs, 400076	India					
te 9/12/2024 11:04 A	M	Des	igned by	/ NAI	1015	38
le AT01 Pond.SRCX		Cheo	cked bv			
novvze		Sour	rce Cont	rol	2020	.1.3
Summary of	Results f	for 10	00 vear	Ret	urn E	eriod (+48%)
Sto	rm Ma	ax M	iax Ma	x	Max	Status
Eve	nt Lev	vel De	pth Cont	rol Vo	olume	
	(п	n) (m) (1/	s)	(m³)	
240 mir	Winter 51.	061 1.	161 12	5.7 60	080.6	Flood Risk
360 mir	Winter 51.	052 1.	152 12	5.3 60	032.8	Flood Risk
480 mir	Winter 51.	026 1.	126 12	3.9 58	885.1	Flood Risk
600 mir	Winter 51.	004 1.	104 12	2.7 5	763.7	Flood Risk
720 mir	Winter 50.	982 1. 021 1	082 12	1.5 50	634.3	Flood Risk
960 mir 1440 mir	Winter 50. Winter 50	931 I. 827 ∩	031 11 927 11	0./ 5. 2 7 /	553.U 771 5	Flood Risk
2160 mir	Winter 50.	679 O.	779 10	2.7 4 4.9 30	968.3	O K
2880 mir	Winter 50.	533 0.	633 10	4.9 31	188.0	O K
4320 mir	Winter 50.	336 0.	436 10	3.6 23	166.0	O K
5760 mir	Winter 50.	254 0.	354 9	6.6 1	746.8	O K
5		Naim	riooueu	DISCH	arge	IIIIIe Feak
E	vent (n	nm/hr)	Volume	Volu	ıme	(mins)
E	vent (n	nm/hr)	Volume (m³)	Volu (m [:]	ume ³)	(mins)
E 240 m	in Winter 3	mm/hr)	Volume (m³) 0.0	Volu (m ³	ume 3) 49.4	(mins) 238
E 240 m 360 m	in Winter 3	nm/hr) 82.183 22.977	Volume (m ³) 0.0 0.0	Volu (m ³ 70 75	ame 3) 49.4 51.7	(mins) 238 346
E 240 m 360 m 480 m	in Winter 3 in Winter 2 in Winter 1	nm/hr) 32.183 22.977 18.093	Volume (m ³) 0.0 0.0 0.0	Volu (m ³ 70 75 79	49.4 51.7 28.6	(mins) 238 346 438
E 240 m 360 m 480 m 600 m 720 m	in Winter 3 in Winter 2 in Winter 1 in Winter 1 in Winter 1	32.183 22.977 18.093 15.037	Volume (m ³) 0.0 0.0 0.0 0.0	Volu (m ³ 70 75 79 82	49.4 51.7 28.6 35.1 95.7	(mins) 238 346 438 474 550
E 240 m 360 m 480 m 600 m 720 m 960 m	in Winter 3 in Winter 2 in Winter 1 in Winter 1 in Winter 1 in Winter 1	mm/hr) 32.183 22.977 18.093 15.037 12.932 10.204	Volume (m ³) 0.0 0.0 0.0 0.0 0.0	Volu (m ³ 70 75 79 82 84 89	49.4 51.7 28.6 35.1 95.7 29.1	(mins) 238 346 438 474 550 702
E 240 m 360 m 480 m 600 m 720 m 960 m 1440 m	in Winter 3 in Winter 2 in Winter 1 in Winter 1 in Winter 1 in Winter 1 in Winter 1 in Winter 1	32.183 22.977 18.093 15.037 12.932 10.204 7.328	Volume (m³) 0.0 0.0 0.0 0.0 0.0 0.0	Volu (m ³ 70 75 79 82 84 89 95	49.4 51.7 28.6 35.1 95.7 29.1 86.8	(mins) 238 346 438 474 550 702 1000
E 360 m 480 m 600 m 720 m 960 m 1440 m 2160 m	in Winter 3 in Winter 2 in Winter 1 in Winter 1 in Winter 1 in Winter 1 in Winter 1 in Winter 1 in Winter	mm/hr) 32.183 22.977 18.093 15.037 12.932 10.204 7.328 5.306	Volume (m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Volu (m ³ 70 75 79 82 84 89 95 106	49.4 51.7 28.6 35.1 95.7 29.1 86.8 10.5	(mins) 238 346 438 474 550 702 1000 1432
E 240 m 360 m 480 m 600 m 720 m 960 m 1440 m 2160 m 2880 m	in Winter 3 in Winter 2 in Winter 1 in Winter 1 in Winter 1 in Winter 1 in Winter 1 in Winter in Winter in Winter	mm/hr) 32.183 22.977 18.093 15.037 12.932 10.204 7.328 5.306 4.252	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Volu (m ³ 70 75 79 82 84 89 95 106 1106	49.4 51.7 28.6 35.1 95.7 29.1 86.8 10.5 30.2	(mins) 238 346 438 474 550 702 1000 1432 1816 616
240 m 360 m 480 m 600 m 720 m 960 m 1440 m 2160 m 2880 m 4320 m	in Winter 3 in Winter 2 in Winter 1 in Winter 1 in Winter 1 in Winter 1 in Winter 1 in Winter in Winter in Winter in Winter	mm/hr) 32.183 22.977 18.093 15.037 12.932 10.204 7.328 5.306 4.252 3.160	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volu (m ³) 70 75 79 82 84 89 95 106 113 125	49.4 51.7 28.6 35.1 95.7 29.1 86.8 10.5 30.2 77.1	(mins) 238 346 438 474 550 702 1000 1432 1816 2468 2072
240 m 360 m 480 m 600 m 720 m 960 m 1440 m 2160 m 2880 m 4320 m 5760 m	in Winter 3 in Winter 2 in Winter 1 in Winter 1 in Winter 1 in Winter 1 in Winter 1 in Winter in Winter in Winter in Winter in Winter	mm/hr) 32.183 22.977 18.093 15.037 12.932 10.204 7.328 5.306 4.252 3.160 2.596	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volu (m ³ 70 75 79 82 84 89 95 106 113 125 139	49.4 51.7 28.6 35.1 95.7 29.1 86.8 10.5 30.2 77.1 07.0	(mins) 238 346 438 474 550 702 1000 1432 1816 2468 3072
240 m 360 m 480 m 600 m 720 m 960 m 1440 m 2160 m 2880 m 4320 m 5760 m	in Winter 3 in Winter 2 in Winter 1 in Winter 1 in Winter 1 in Winter 1 in Winter 1 in Winter in Winter in Winter in Winter in Winter	mm/hr) 32.183 22.977 18.093 15.037 12.932 10.204 7.328 5.306 4.252 3.160 2.596	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volu (m ³ 70 75 79 82 84 89 95 106 113 125 139	49.4 51.7 28.6 35.1 95.7 29.1 86.8 10.5 30.2 77.1 07.0	(mins) 238 346 438 474 550 702 1000 1432 1816 2468 3072
240 m 360 m 480 m 600 m 720 m 960 m 1440 m 2160 m 2880 m 4320 m 5760 m	in Winter 3 in Winter 2 in Winter 1 in Winter 1 in Winter 1 in Winter 1 in Winter 1 in Winter in Winter in Winter in Winter in Winter	mm/hr) 32.183 22.977 18.093 15.037 12.932 10.204 7.328 5.306 4.252 3.160 2.596	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volu (m ³ 70 75 79 82 84 89 95 106 113 125 139	49.4 51.7 28.6 35.1 95.7 29.1 86.8 10.5 30.2 77.1 07.0	(mins) 238 346 438 474 550 702 1000 1432 1816 2468 3072
240 m 360 m 480 m 600 m 720 m 960 m 1440 m 2160 m 2880 m 4320 m 5760 m	in Winter 3 in Winter 2 in Winter 1 in Winter 1 in Winter 1 in Winter 1 in Winter 1 in Winter in Winter in Winter in Winter in Winter	mm/hr) 32.183 22.977 18.093 15.037 12.932 10.204 7.328 5.306 4.252 3.160 2.596	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volu (m ³ 70 75 79 82 84 89 95 106 113 125 139	49.4 51.7 28.6 35.1 95.7 29.1 86.8 10.5 30.2 77.1 07.0	(mins) 238 346 438 474 550 702 1000 1432 1816 2468 3072
240 m 360 m 480 m 600 m 720 m 960 m 1440 m 2160 m 2880 m 4320 m 5760 m	in Winter 3 in Winter 2 in Winter 1 in Winter 1 in Winter 1 in Winter 1 in Winter 1 in Winter in Winter in Winter in Winter in Winter	mm/hr) 32.183 22.977 18.093 15.037 12.932 10.204 7.328 5.306 4.252 3.160 2.596	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volu (m ³ 70 75 79 82 84 89 95 106 113 125 139	49.4 51.7 28.6 35.1 95.7 29.1 86.8 10.5 30.2 77.1 07.0	(mins) 238 346 438 474 550 702 1000 1432 1816 2468 3072
240 m 360 m 480 m 600 m 720 m 960 m 1440 m 2160 m 2880 m 4320 m 5760 m	in Winter 3 in Winter 2 in Winter 1 in Winter 1 in Winter 1 in Winter 1 in Winter 1 in Winter in Winter in Winter in Winter in Winter	mm/hr) 32.183 22.977 18.093 15.037 12.932 10.204 7.328 5.306 4.252 3.160 2.596	Volume (m³)	Volu (m ³ 70 75 79 82 84 89 95 106 113 125 139	49.4 51.7 28.6 35.1 95.7 29.1 86.8 10.5 30.2 77.1 07.0	(mins) 238 346 438 474 550 702 1000 1432 1816 2468 3072
240 m 360 m 480 m 600 m 720 m 960 m 1440 m 2160 m 2880 m 4320 m 5760 m	in Winter 3 in Winter 2 in Winter 1 in Winter 1 in Winter 1 in Winter 1 in Winter 1 in Winter 1 in Winter in Winter in Winter in Winter in Winter	mm/hr) 32.183 22.977 18.093 15.037 12.932 10.204 7.328 5.306 4.252 3.160 2.596	Volume (m³)	Volu (m ³ 70 75 79 82 84 89 95 106 113 125 139	49.4 51.7 28.6 35.1 95.7 29.1 86.8 10.5 30.2 77.1 07.0	(mins) 238 346 438 474 550 702 1000 1432 1816 2468 3072
240 m 360 m 480 m 600 m 720 m 960 m 1440 m 2160 m 2880 m 4320 m 5760 m	in Winter 3 in Winter 2 in Winter 1 in Winter 1 in Winter 1 in Winter 1 in Winter 1 in Winter in Winter in Winter in Winter in Winter	mm/hr) 32.183 22.977 18.093 15.037 12.932 10.204 7.328 5.306 4.252 3.160 2.596	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volu (m ³ 70 75 79 82 84 89 95 106 113 125 139	49.4 51.7 28.6 35.1 95.7 29.1 86.8 10.5 30.2 77.1 07.0	(mins) 238 346 438 474 550 702 1000 1432 1816 2468 3072
240 m 360 m 480 m 600 m 720 m 960 m 1440 m 2160 m 2880 m 4320 m 5760 m	in Winter 3 in Winter 2 in Winter 1 in Winter 1 in Winter 1 in Winter 1 in Winter 1 in Winter in Winter in Winter in Winter in Winter	mm/hr) 32.183 22.977 18.093 15.037 12.932 10.204 7.328 5.306 4.252 3.160 2.596	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volu (m ³ 70 75 79 82 84 89 95 106 113 125 139	49.4 51.7 28.6 35.1 95.7 29.1 86.8 10.5 30.2 77.1 07.0	(mins) 238 346 438 474 550 702 1000 1432 1816 2468 3072
240 m 360 m 480 m 600 m 720 m 960 m 1440 m 2160 m 2880 m 4320 m 5760 m	in Winter 3 in Winter 2 in Winter 1 in Winter 1 in Winter 1 in Winter 1 in Winter 1 in Winter in Winter in Winter in Winter in Winter	mm/hr) 32.183 22.977 18.093 15.037 12.932 10.204 7.328 5.306 4.252 3.160 2.596	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Volu (m ³ 70 75 79 82 84 89 95 106 113 125 139	49.4 51.7 28.6 35.1 95.7 29.1 86.8 10.5 30.2 77.1 07.0	(mins) 238 346 438 474 550 702 1000 1432 1816 2468 3072
240 m 360 m 480 m 600 m 720 m 960 m 1440 m 2160 m 2880 m 4320 m 5760 m	in Winter 3 in Winter 2 in Winter 1 in Winter 1 in Winter 1 in Winter 1 in Winter 1 in Winter in Winter in Winter in Winter in Winter	mm/hr) 32.183 22.977 18.093 15.037 12.932 10.204 7.328 5.306 4.252 3.160 2.596	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Volu (m ³ 70 75 79 82 84 89 95 106 113 125 139	49.4 51.7 28.6 35.1 95.7 29.1 86.8 10.5 30.2 77.1 07.0	(mins) 238 346 438 474 550 702 1000 1432 1816 2468 3072
240 m 360 m 480 m 600 m 720 m 960 m 1440 m 2160 m 2880 m 4320 m 5760 m	in Winter 3 in Winter 2 in Winter 1 in Winter 1 in Winter 1 in Winter 1 in Winter in Winter in Winter in Winter in Winter	mm/hr) 32.183 22.977 18.093 15.037 12.932 10.204 7.328 5.306 4.252 3.160 2.596	Volume (m³)	Volu (m ³ 70 75 79 82 84 89 95 106 113 125 139	49.4 51.7 28.6 35.1 95.7 29.1 86.8 10.5 30.2 77.1 07.0	(mins) 238 346 438 474 550 702 1000 1432 1816 2468 3072
240 m 360 m 480 m 600 m 720 m 960 m 1440 m 2160 m 2880 m 4320 m 5760 m	in Winter 3 in Winter 2 in Winter 1 in Winter 1 in Winter 1 in Winter 1 in Winter 1 in Winter in Winter in Winter in Winter in Winter	mm/hr) 32.183 22.977 18.093 15.037 12.932 10.204 7.328 5.306 4.252 3.160 2.596	Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Volu (m ³ 70 75 79 82 84 89 95 106 113 125 139	49.4 51.7 28.6 35.1 95.7 29.1 86.8 10.5 30.2 77.1 07.0	(mins) 238 346 438 474 550 702 1000 1432 1816 2468 3072

Mott MacDonald Pvt Ltd	Page 3
Unit No. 101, 1st Floor, Nom	
Hiranandani Garden, Powai, M	
Maharashtrs, 400076 India	Mirro
Date 9/12/2024 11:04 AM Designed by NAI101538	Ncainago
File AT01 Pond.SRCX Checked by	brainage
Innovyze Source Control 2020.1.3	
Rainfall Details	
Rainfall Model FEH	
FEH Rainfall Version 2013	
Site Location GB 140358 931952 NB 40358 31952	
Data Type Point	
Winter Storms Yes	
Cv (Summer) 0.750	
Cv (Winter) 1.000	
Longest Storm (mins) 15	
Climate Change % +48	
<u>Time Area Diagram</u>	
Total Area (ha) 5.601	
Time (mins) Area Time (mins) Area Time (mins) Area	
From: To: (ha) From: To: (ha) From: To: (ha)	
0 4 1.867 4 8 1.867 8 12 1.867	
©1982-2020 Innovyze	

Mott MacDonald Pvt Ltd		Page 4						
Unit No. 101, 1st Floor, Nom								
Hiranandani Garden, Powai, M								
Maharashtrs, 400076 India		Mirro						
Date 9/12/2024 11:04 AM	Designed by NAI101538	Drainage						
File AT01 Pond.SRCX	brainiage							
Innovyze Source Control 2020.1.3								
N	odel Details							
±	<u>oder betarrb</u>							
Storage is On	Line Cover Level (m) 51.100							
Tank	or Pond Structure							
Inver	t Level (m) 49.900							
Depth (m) Area (m ²) Dep	th (m) Area (m ²) Depth (m)	Area (m²)						
0.000 4800.0	0.800 5407.5 1.100	5644.7						
<u>Hydro-Brake®</u>	Optimum Outflow Contro	<u>,1</u>						
Unit	Reference MD-SHE-0407-1050	-0800-1050						
Desig	n Head (m)	0.800						
Design	Flow (l/s) Flush-Flo™	105.0 Calculated						
	Objective Minimise upstre	am storage						
A	oplication	Surface						
Dia	neter (mm)	407						
Invert	Level (m)	49.900						
Minimum Outlet Pipe Dia Suggested Maphole Dia	neter (mm)	450 2100						
Control Po	nete Head (m) Flow ()	/s)						
Design Point (Ca	loulated) 0 800 104	1 9						
Eesign forme (ca	lush-Flo™ 0.534 104	4.9						
	Kick-Flo® 0.730 100	0.4						
Mean Flow over H	ead Range - 74	1.3						
The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated								
Depth (m) Flow (1/s) Depth (m) Flow	(1/s) Depth (m) Flow (1/s)) Depth (m) Flow (1/s)						
0.100 11.1 1.200	127.8 3.000 199.1 127.7 2.500 215.5	9 7.000 302.9						
0.300 77.3 1.600	137.7 3.500 215.3 147.0 4.000 230.3	1 8.000 323.5						
0.400 102.4 1.800	155.7 4.500 243.	8 8.500 329.5						
0.500 104.8 2.000	163.9 5.000 256. 171 7 5.000 200	8 9.000 339.3						
0.800 104.4 2.200	179.2 6.000 280.3	1 9.500 348.8 8						
1.000 116.9 2.600	186.3 6.500 292.	1						
©198	2-2020 Innovyze							

Mott MacDonald Pvt L	td						Page 1
Unit No. 101, 1st Fl	oor, Nom.	••					
Hiranandani Garden,	Powai, M.						
Maharashtrs, 400076	India						Micro
Date 9/12/2024 11:53	AM	Des	igned b	y NAI1	01538	}	
File AT02 Pond.SRCX		Che	cked by				Dialitacje
Innovyze		Sou	rce Con	trol 2	020.1	.3	
Summary	of Results	for 2	<u>00 year</u>	Retur	n Per	riod (+48%)	
	Storm	Max	Max	Max	Max	Status	
	Event	Level	Depth Co	ontrol V	/olume		
		(m)	(m) (1/s)	(m ³)		
15	min Summer	50.209	0.309	72.8	797.8	O K	
30	min Summer	50.339	0.439	84.6 1	150.8	O K	
60	min Summer	50.499	0.599	85.0 1	1595.3	O K	
120	min Summer	50.547	0.647	85.0 1	1732.7	OK	
240	min Summer	50.552	0.652	85.0 1	L744.6	O K	
360	min Summer	50.540	0.640	85.0 1	L711.1	O K	
480	min Summer	50.520	0.620	85.0 1	L655.0	ОК	
600	min Summer	50.497	0.597	85.0 1	1589.5	ОК	
720	min Summer	50.473	0.573	85.0 1	1520.6	O K	
960	min Summer	50.424	0.524	85.0 I	152.1	OK	
2160	min Summer	50.256	0.356	82.5	924.0	0 K	
2880	min Summer	50.215	0.315	74.7	814.2	0 K	
4320	min Summer	50.170	0.270	60.4	695.2	O K	
5760	min Summer	50.144	0.244	51.5	625.1	O K	
15	min Winter	50.308	0.408	84.0 1	L064.9	OK	
60	min Winter	50.701	0.801	85.0 2	2177.7	0 K	
120	min Winter	50.774	0.874	88.7 2	2394.9	0 K	
180	min Winter	50.791	0.891	89.5 2	2444.5	O K	
	Storm	Rain	Flooded	Discha	rge Ti	me-Peak	
	Event	(mm/hr)	Volume	Volum	ne	(mins)	
			(m³)	(m³)			
15	min Summer	138.291	0.0	78	2.0	24	
30	min Summer	102.386	0.0	118	4.6	38	
60	min Summer	73.216	0.0	175	6.8	66	
120	min Summer	42.979	0.0	206	7.5	122	
180	min Summer	31.233	0.0	225	6.0	162	
240	min Summer	24.853 17.992	0.0	239.	J.U 2.6	192 256	
480	min Summer	14.278	0.0	275	4.9	324	
600	min Summer	11.929	0.0	287	7.5	390	
720	min Summer	10.300	0.0	298	1.6	458	
960	min Summer	8.174	0.0	315	4.5	586	
2160	min Summer	3.914 4,308	0.0	341 377	0.9 1.1	032 1176	
2880	min Summer	3.465	0.0	404	0.4	1532	
4320	min Summer	2.582	0.0	449	9.1	2252	
5760	min Summer	2.123	0.0	497	1.2	2992	
15	min Winter	138.291	0.0	106	1.4	25	
30	min Winter	102.386 73 216	0.0	159 235	ν.8 2.3	39 66	
120	min Winter	42.979	0.0	233	6.6	122	
180	min Winter	31.233	0.0	301	8.0	178	
	-	1000 00		ATTT			

	.oor, Nom						
Hiranandani Garden.	Powai. M						
Asharashtra 400076	Iowal, II.	••					
Allarashtrs, 400070	Illuia				101500		— Micro
ate 9/12/2024 11:53	3 AM	Des	igned b	Y NAI	101538		Draina
File AT02 Pond.SRCX		Che	cked by	•			Didirid
Innovyze		Sou	rce Con	trol	2020.1	.3	
0		C a a b		- D - I	D.		0.0.)
<u>Summary</u>	<u>oi kesults</u>	<u>s ior 2</u>	<u>uu year</u>	<u>Retu</u>	Irn Pei	<u>100 (+4</u>	<u>8%)</u>
	Storm	Max	Max	Max	Max	Status	
	Event	Level	Depth Co	ontrol	Volume		
		(m)	(m)	(1/s)	(m³)		
240) min Mintor	50 706	0 006	00 2	2120 0	0 K	
240) min Winter	JU./00 50 765	0.000	07.J 88 7	2430.8	OK	
200) min Winter	50.705	0.000	00.2 86 8	2201.2	0 K 0 K	
400) min Winter	50.702	0.802	85.1	2180.6	0 K	
720) min Winter	50.665	0.765	85.0	2071.2	0 K	
960) min Winter	50.582	0.682	85.0	1833.0	ΟK	
1440) min Winter	50.427	0.527	85.0	1391.7	ОК	
2160) min Winter	50.273	0.373	83.1	971.2	ОК	
2880) min Winter	50.213	0.313	74.1	809.1	ОК	
4320) min Winter	50.161	0.261	57.2	669.5	O K	
5760) min Winter	50.132	0.232	47.7	594.5	O K	
	Storm	Rain	Flooded	Disch	arge Ti	me-Peak	
	Storm Event	Rain (mm/hr)	Flooded Volume (m³)	Disch Volu (m ³	arge Ti me 3)	.me-Peak (mins)	
240	Storm Event	Rain (mm/hr)	Flooded Volume (m ³)	Disch Volu (m ³	arge Ti me 3) 03.5	me-Peak (mins)	
240 360	Storm Event min Winter min Winter	Rain (mm/hr) 24.853 17.992	Flooded Volume (m ³) 0.0 0.0	Disch Volu (m ³ 32 34	arge Ti me 3) 03.5 80.4	me-Peak (mins) 230 284	
240 360 480	Storm Event min Winter min Winter min Winter	Rain (mm/hr) 24.853 17.992 14.278	Flooded Volume (m ³) 0.0 0.0 0.0	Disch Volu (m ³ 32 34 36	arge Ti me 3) 03.5 80.4 83.6	me-Peak (mins) 230 284 362	
240 360 480 600	Storm Event min Winter min Winter min Winter min Winter	Rain (mm/hr) 24.853 17.992 14.278 11.929	Flooded Volume (m ³) 0.0 0.0 0.0 0.0	Disch Volu (m ³ 32 34 36 38	arge Ti me 3) 03.5 80.4 83.6 47.2	me-Peak (mins) 230 284 362 438	
240 360 480 600 720	Storm Event min Winter min Winter min Winter min Winter min Winter	Rain (mm/hr) 24.853 17.992 14.278 11.929 10.300	Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0	Disch Volu (m ³ 32 34 36 38 39	arge Ti me 3) 03.5 80.4 83.6 47.2 86.2	me-Peak (mins) 230 284 362 438 512	
240 360 480 600 720 960	Storm Event min Winter min Winter min Winter min Winter min Winter min Winter	Rain (mm/hr) 24.853 17.992 14.278 11.929 10.300 8.174	Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0	Disch Volu (m ³ 32 34 36 38 39 42	arge Ti me 3 ³) 03.5 80.4 83.6 47.2 86.2 17.9	me-Peak (mins) 230 284 362 438 512 656	
240 360 480 600 720 960 1440	Storm Event min Winter min Winter min Winter min Winter min Winter min Winter	Rain (mm/hr) 24.853 17.992 14.278 11.929 10.300 8.174 5.914	Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Disch Volu (m ³ 32 34 36 38 39 42 45	arge Ti me 3) 03.5 80.4 83.6 47.2 86.2 17.9 72.7	me-Peak (mins) 230 284 362 438 512 656 904	
240 360 480 600 720 960 1440 2160	Storm Event min Winter min Winter min Winter min Winter min Winter min Winter min Winter	Rain (mm/hr) 24.853 17.992 14.278 11.929 10.300 8.174 5.914 4.308	Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Disch Volu (m ³ 32 34 36 38 39 42 45 50	arge Ti me 3) 03.5 80.4 83.6 47.2 86.2 17.9 72.7 35.8	me-Peak (mins) 230 284 362 438 512 656 904 1236	
240 360 480 600 720 960 1440 2160 2880	Storm Event min Winter min Winter min Winter min Winter min Winter min Winter min Winter min Winter	Rain (mm/hr) 24.853 17.992 14.278 11.929 10.300 8.174 5.914 4.308 3.465	Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Disch Volu (m ³ 32 34 36 38 39 42 45 50 53	arge Ti me 3) 03.5 80.4 83.6 47.2 86.2 17.9 72.7 35.8 96.4	me-Peak (mins) 230 284 362 438 512 656 904 1236 1560 2222	
240 360 480 600 720 960 1440 2160 2880 4320	Storm Event min Winter min Winter min Winter min Winter min Winter min Winter min Winter min Winter min Winter min Winter	Rain (mm/hr) 24.853 17.992 14.278 11.929 10.300 8.174 5.914 4.308 3.465 2.582	Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Disch Volu (m ³ 32 34 36 38 39 42 45 50 53 60	arge Ti me 3) 03.5 80.4 83.6 47.2 86.2 17.9 72.7 35.8 96.4 14.8 22 2	me-Peak (mins) 230 284 362 438 512 656 904 1236 1560 2288 2000	

Mott MacDonald Pvt Ltd		Page 3
Unit No. 101, 1st Floor, Nom		
Hiranandani Garden, Powai, M		
Maharashtrs, 400076 India		Micco
Date 9/12/2024 11:53 AM		
File AT02 Pond.SRCX	Dialitage	
Innovyze	Source Control 2020.1.3	
_		
<u>Ra</u>	intall Details	
Rainfall Mode	el FEH	
Return Period (years	s) 200	
FEH Rainfall Versio	2013	
Data Typ	DN GB 140358 931952 NB 40358 51952 De Point	
Summer Storn	ns Yes	
Winter Storm	ns Yes	
Cv (Summer Cv (Winter	c) 1.000	
Shortest Storm (mins	5) 15	
Longest Storm (mins	s) 5760 2 1/2	
Ciimate change	• +40	
Tin	ne Area Diagram	
Tot -	$(h_1)^2 (h_2)^2 (h_3)^2$	
	AI AIEA (IIA) 3.202	
Time (mins) Area Ti From: To: (ba) Fr	me (mins) Area Time (mins) Area	
0 4 1.087	4 8 1.087 8 12 1.087	
©198	2-2020 Innovyze	

Mott MacDonald Pvt Ltd			Page 4				
Unit No. 101, 1st Floor, Nom							
Hiranandani Garden, Powai, M							
Maharashtrs, 400076 India			Micco				
Date 9/12/2024 11:53 AM	Designed by NA	AI101538					
File AT02 Pond.SRCX	Diamaye						
Innovyze Source Control 2020.1.3							
<u>▶</u>	<u>Model Details</u>						
Storage is On	line Cover Level	(m) 51.100					
Tank	or Pond Struct	<u>are</u>					
Inver	rt Level (m) 49.90	00					
Depth (m) Area (m²) Dep	oth (m) Area (m²)	Depth (m) Area	(m²)				
0.000 2500.0	0.800 2943.5	1.100 31	19.1				
Hydro-Brake®	Optimum Outflo	<u>ow Control</u>					
Unit	Reference MD-SHE	-0372-8500-0800-	8500				
Desig	n Head (m)	0	.800				
Design	Flow (l/s)		85.0				
	Objective Minim	ise upstream sto	ated rage				
A	pplication	Sur	face				
Sump	Available		Yes				
Dia Invert	meter (mm) Level (m)	4 9	372				
Minimum Outlet Pipe Dia	meter (mm)	19	450				
Suggested Manhole Dia	meter (mm)		2100				
Control Po	ints Head (n	n) Flow (l/s)					
Design Point (Ca	alculated) 0.80	00 85.0					
E	Flush-Flo™ 0.49	96 85.0					
Mean Flow over H	Kick-Flo® 0.71 Head Bange	- 61 9					
	lead hange	01.9					
The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated							
Depth (m) Flow (l/s) Depth (m) Flow	v (l/s) Depth (m)	Flow (l/s) Dept	h (m) Flow (l/s)				
0.100 10.5 1.200	103.4 3.000	161.7	7.000 244.9				
0.200 37.2 1.400	111.5 3.500	174.3	/.500 253.4 8 000 261 5				
0.400 83.9 1.800	126.0 4.500	197.2	8.500 266.7				
0.500 85.0 2.000	132.6 5.000	207.6	9.000 274.6				
0.600 83.9 2.200	139.0 5.500	217.6	9.500 282.3				
0.800 85.0 2.400	145.0 6.000	227.1					
1.000 94.7 2.600	150.8 6.500	236.2					
©198	32-2020 Innovyz	е					

Mott MacDonald Pvt Ltd						Page 1
Unit No. 101, 1st Floor, Nom						
Hiranandani Garden, Powai, M						
Maharashtrs, 400076 India						Micco
Date 9/12/2024 11:54 AM	Des	signed b	ov NA	AI1015	38	
File ATO2 Pond SRCX	Che	ecked by	7			Drainage
	S01	urco Cor	$\frac{1}{1+ro^{-1}}$	1 2020	1 2	
11110 v y 2 e	500	uice coi		1 2020	• 1 • 3	
Summary of Result	s for 1	000 1703	r Pc	turn I	Pariod $(+182)$	
<u>Summary or Resurc</u>	.5 101 1	<u>.000 yea</u>	L IVE		erroa (140%)	
Storm	Max	Max M	ax	Max	Status	
Event	Level I	Depth Con	trol	Volume		
	(m)	(m) (l	/s)	(m³)		
15 min Our	F0 207 (04 0	1000 0	0.77	
15 min Summer 30 min Summer	50.307 0).407	84.U 85 0	1587 6	O K	
60 min Summer	50 725 () 825	86.2	2248 4	O K O K	
120 min Summer	50.772 ().872	88.6	2389.5	O K	
180 min Summer	50.773 (.873	88.6	2391.7	O K	
240 min Summer	50.761 0	.861	88.1	2355.9	O K	
360 min Summer	50.738 0	.838	86.9	2285.9	0 K	
480 min Summer	50.712 0	0.812	85.6	2210.4	ОК	
600 min Summer	50.685 0	.785	85.0	2130.0	O K	
720 min Summer	50.656 0	.756	85.0	2047.3	O K	
960 min Summer	50.598 0	0.698	85.0	1876.9	O K	
1440 min Summer	50.485 0	0.585	85.0	1555.9	0 K	
2160 min Summer	50.361 ().461	84.8	1209.6	O K	
2880 min Summer	50.282 U),382	83.3 73 7	993.5	O K	
5760 min Summer	50.178 ().278	63.0	716.5	O K	
15 min Winter	50.440 0).540	85.0	1429.6	0 K	
30 min Winter	50.691 0	.791	85.0	2147.5	0 K	
60 min Winter	50.985 1	L.085	98.5	3036.9	Flood Risk	
120 min Winter	51.056 1	L.156 1	01.6	3258.2	Flood Risk	
180 min Winter	51.068 1	L.168 1	02.1	3295.9	Flood Risk	
				-		
Storm	Rain	Flooded	l Dis	charge	Time-Peak	
Event	(mm/nr) VOLUME (m ³)	vc	(m ³)	(mins)	
		(111)		(
15 min Summe	r 184.23	0.0)	1060.4	25	
30 min Summe	r 139.17	9 0.0)	1630.1	39	
60 min Summe	r 100.65	5 0.0) .	2426.3	68	
120 min Summe.	r 57.21	/ 0.0) .	2762.2	124	
180 min Summe.	r 40.88	1 U.(3 0 0). Y	2962.6 3110 0	180 210	
360 min Summe	r 22.18	5 0.0 7 0.0	,)	3332 2	210	
480 min Summe	r 18.09	3 0.0)	3499.1	338	
600 min Summe	r 15.03	7 0.0)	3635.3	406	
720 min Summe	r 12.93	2 0.0)	3751.5	476	
960 min Summe	r 10.20	4 0.0)	3946.3	610	
1440 min Summe	r 7.32	8 0.0)	4245.5	864	
2160 min Summe	r 5.30	6 0.0)	4649.3	1216	
2880 min Summe.	r 4.25	∠ U.()	4964.4	1560	
4320 min Summe. 5760 min Summe.	1 J.16 r 250)	2016.3 2016.3	2232	
15 min Winte	⊥ 2.J9 r 184 23	0 0.0	,)	1432 4	25 25	
30 min Winte	r 139.17	9 0.0)	2190.6	39	
60 min Winte	r 100.65	5 0.0)	3245.0	68	
120 min Winte	r 57.21	7 0.0)	3692.9	122	
180 min Winte	r 40.88	7 0.0)	3960.3	178	
	01000					
	©1982-2	2020 Inn	ovyz	e		

					Page 2
init No. 101, 1st Floor, Nom	••••				
iranandani Garden, Powai, M	••••				
aharashtrs, 400076 India					Micro
ate 9/12/2024 11:54 AM	Des	igned by	y NAI1015	38	
ile AT02 Pond.SRCX	Che	cked by			UI dii ic
nnovvze	Sou	rce Cont	trol 2020	.1.3	_
- 1 -					
Summary of Result	s for 1	000 year	Return	Period (+48%	<u>,)</u>
		-			
Storm	Max 1	4ax Ma	x Max	Status	
Event	Level De	pth Cont	rol Volume		
	(m)	(m) (1/	s) (m³)		
240 min Winter	51.058 1	.158 10	1.6 3265.1	Flood Risk	
360 min Winter	51.019 1	.119 10	0.0 3144.3	Flood Risk	
480 min Winter	50.983 1	.083 9	8.4 3032.6	Flood Risk	
600 min Winter	50.944 1	.044 9	6.7 2910.1	Flood Risk	
720 min Winter	50.903 1	.003 9	4.8 2783.2 0 9 2521 4	Flood Risk	
960 Min Winter 1440 min Winter	50 661 0	.920 9 761 9	U.Y ZOJI.4 5 0 2050 /	riood Kisk O K	
2160 min Winter	50.432 0	.,or o .532 8	5.0 2009.4 5.0 1406.9	0 K	
2880 min Winter	50.291 0	.391 8	3.6 1017.8	0 K	
4320 min Winter	50.199 0	.299 6	9.9 771.7	ОК	
5760 min Winter	50.164 0	.264 5	8.2 678.2	0 K	
		(m³)	(m³)		
240 min Winte	r 32.183	0.0	4157.2	232	
240 MILLI WILLCO			4453 3	294	
360 min Winte 400 min Winte	r 22.977	0.0	1100.0	270	
360 min Winte 480 min Winte 600 min Winte	r 22.977 r 18.093 r 15.037	0.0	4676.1	370	
360 min Winte 480 min Winte 600 min Winte 720 min Winte	r 22.977 r 18.093 r 15.037 r 12.932	0.0 0.0 0.0 0.0	4676.1 4857.8 5012.9	370 446 522	
360 min Winte 360 min Winte 480 min Winte 600 min Winte 720 min Winte 960 min Winte	r 22.977 r 18.093 r 15.037 r 12.932 r 10.204	0.0 0.0 0.0 0.0 0.0	4676.1 4857.8 5012.9 5272.6	370 446 522 670	
360 min Winte 360 min Winte 480 min Winte 600 min Winte 720 min Winte 960 min Winte 1440 min Winte	r 22.977 r 18.093 r 15.037 r 12.932 r 10.204 r 7.328	0.0 0.0 0.0 0.0 0.0	4676.1 4857.8 5012.9 5272.6 5674.9	370 446 522 670 956	
360 min Winte 360 min Winte 480 min Winte 600 min Winte 720 min Winte 960 min Winte 1440 min Winte 2160 min Winte	r 22.977 r 18.093 r 15.037 r 12.932 r 10.204 r 7.328 r 5.306	0.0 0.0 0.0 0.0 0.0 0.0 0.0	4676.1 4857.8 5012.9 5272.6 5674.9 6206.8	370 446 522 670 956 1320	
360 min Winte 360 min Winte 480 min Winte 600 min Winte 720 min Winte 960 min Winte 1440 min Winte 2160 min Winte 2880 min Winte 4320 min Winte	r 22.977 r 18.093 r 15.037 r 12.932 r 10.204 r 7.328 r 5.306 r 4.252 r 3.160		4676.1 4857.8 5012.9 5272.6 5674.9 6206.8 6628.6 7371.7	370 446 522 670 956 1320 1624 2288	
360 min Winte 360 min Winte 480 min Winte 600 min Winte 720 min Winte 960 min Winte 1440 min Winte 2160 min Winte 4320 min Winte 5760 min Winte	r 22.977 r 18.093 r 15.037 r 12.932 r 10.204 r 7.328 r 5.306 r 4.252 r 3.160 r 2.596		4676.1 4857.8 5012.9 5272.6 5674.9 6206.8 6628.6 7371.7 8114.3	370 446 522 670 956 1320 1624 2288 3000	
360 min Winte 360 min Winte 480 min Winte 600 min Winte 720 min Winte 960 min Winte 1440 min Winte 2160 min Winte 4320 min Winte	r 22.977 r 18.093 r 15.037 r 12.932 r 10.204 r 7.328 r 5.306 r 4.252 r 3.160 r 2.596		4676.1 4857.8 5012.9 5272.6 5674.9 6206.8 6628.6 7371.7 8114.3	370 446 522 670 956 1320 1624 2288 3000	
360 min Winte 360 min Winte 480 min Winte 600 min Winte 720 min Winte 1440 min Winte 2160 min Winte 2880 min Winte 4320 min Winte 5760 min Winte	r 22.977 r 18.093 r 15.037 r 12.932 r 10.204 r 7.328 r 5.306 r 4.252 r 3.160 r 2.596		4676.1 4857.8 5012.9 5272.6 5674.9 6206.8 6628.6 7371.7 8114.3	370 446 522 670 956 1320 1624 2288 3000	
360 min Winte 360 min Winte 480 min Winte 600 min Winte 720 min Winte 1440 min Winte 2160 min Winte 2880 min Winte 4320 min Winte 5760 min Winte	r 22.977 r 18.093 r 15.037 r 12.932 r 10.204 r 7.328 r 5.306 r 4.252 r 3.160 r 2.596		4676.1 4857.8 5012.9 5272.6 5674.9 6206.8 6628.6 7371.7 8114.3	370 446 522 670 956 1320 1624 2288 3000	
360 min Winte 360 min Winte 480 min Winte 600 min Winte 720 min Winte 960 min Winte 1440 min Winte 2880 min Winte 4320 min Winte 5760 min Winte	r 22.977 r 18.093 r 15.037 r 12.932 r 10.204 r 7.328 r 5.306 r 4.252 r 3.160 r 2.596		4676.1 4857.8 5012.9 5272.6 5674.9 6206.8 6628.6 7371.7 8114.3	370 446 522 670 956 1320 1624 2288 3000	
360 min Winte 360 min Winte 480 min Winte 600 min Winte 720 min Winte 960 min Winte 1440 min Winte 2880 min Winte 4320 min Winte	r 22.977 r 18.093 r 15.037 r 12.932 r 10.204 r 7.328 r 5.306 r 4.252 r 3.160 r 2.596		4676.1 4857.8 5012.9 5272.6 5674.9 6206.8 6628.6 7371.7 8114.3	370 446 522 670 956 1320 1624 2288 3000	
360 min Winte 360 min Winte 480 min Winte 600 min Winte 720 min Winte 960 min Winte 1440 min Winte 2160 min Winte 2880 min Winte 5760 min Winte	r 22.977 r 18.093 r 15.037 r 12.932 r 10.204 r 7.328 r 5.306 r 4.252 r 3.160 r 2.596		4676.1 4857.8 5012.9 5272.6 5674.9 6206.8 6628.6 7371.7 8114.3	370 446 522 670 956 1320 1624 2288 3000	
360 min Winte 360 min Winte 480 min Winte 600 min Winte 720 min Winte 960 min Winte 1440 min Winte 2160 min Winte 2880 min Winte 4320 min Winte 5760 min Winte	r 22.977 r 18.093 r 15.037 r 12.932 r 10.204 r 7.328 r 5.306 r 4.252 r 3.160 r 2.596		4676.1 4857.8 5012.9 5272.6 5674.9 6206.8 6628.6 7371.7 8114.3	370 446 522 670 956 1320 1624 2288 3000	
360 min Winte 360 min Winte 480 min Winte 600 min Winte 720 min Winte 1440 min Winte 2160 min Winte 2880 min Winte 4320 min Winte 5760 min Winte	r 22.977 r 18.093 r 15.037 r 12.932 r 10.204 r 7.328 r 5.306 r 4.252 r 3.160 r 2.596		4676.1 4857.8 5012.9 5272.6 5674.9 6206.8 6628.6 7371.7 8114.3	370 446 522 670 956 1320 1624 2288 3000	
360 min Winte 360 min Winte 480 min Winte 600 min Winte 720 min Winte 960 min Winte 1440 min Winte 2160 min Winte 2880 min Winte 4320 min Winte 5760 min Winte	r 22.977 r 18.093 r 15.037 r 12.932 r 10.204 r 7.328 r 5.306 r 4.252 r 3.160 r 2.596		4676.1 4857.8 5012.9 5272.6 5674.9 6206.8 6628.6 7371.7 8114.3	370 446 522 670 956 1320 1624 2288 3000	
360 min Winte 360 min Winte 480 min Winte 600 min Winte 960 min Winte 1440 min Winte 2160 min Winte 2880 min Winte 4320 min Winte 5760 min Winte	r 22.977 r 18.093 r 15.037 r 12.932 r 10.204 r 7.328 r 5.306 r 4.252 r 3.160 r 2.596		4676.1 4857.8 5012.9 5272.6 5674.9 6206.8 6628.6 7371.7 8114.3	370 446 522 670 956 1320 1624 2288 3000	
360 min Winte 360 min Winte 480 min Winte 720 min Winte 960 min Winte 1440 min Winte 2160 min Winte 2880 min Winte 4320 min Winte 5760 min Winte	r 22.977 r 18.093 r 15.037 r 12.932 r 10.204 r 7.328 r 5.306 r 4.252 r 3.160 r 2.596		4676.1 4857.8 5012.9 5272.6 5674.9 6206.8 6628.6 7371.7 8114.3	370 446 522 670 956 1320 1624 2288 3000	
360 min Winte 360 min Winte 480 min Winte 720 min Winte 960 min Winte 1440 min Winte 2160 min Winte 2880 min Winte 4320 min Winte 5760 min Winte	r 22.977 r 18.093 r 15.037 r 12.932 r 10.204 r 7.328 r 5.306 r 4.252 r 3.160 r 2.596		4676.1 4857.8 5012.9 5272.6 5674.9 6206.8 6628.6 7371.7 8114.3	370 446 522 670 956 1320 1624 2288 3000	
360 min Winte 360 min Winte 480 min Winte 720 min Winte 720 min Winte 1440 min Winte 2160 min Winte 2880 min Winte 4320 min Winte 5760 min Winte	r 22.977 r 18.093 r 15.037 r 12.932 r 10.204 r 7.328 r 5.306 r 4.252 r 3.160 r 2.596		4676.1 4857.8 5012.9 5272.6 5674.9 6206.8 6628.6 7371.7 8114.3	370 446 522 670 956 1320 1624 2288 3000	
360 min Winte 360 min Winte 480 min Winte 720 min Winte 960 min Winte 1440 min Winte 2160 min Winte 2880 min Winte 4320 min Winte 5760 min Winte	r 22.977 r 18.093 r 15.037 r 12.932 r 10.204 r 7.328 r 5.306 r 4.252 r 3.160 r 2.596		4676.1 4857.8 5012.9 5272.6 5674.9 6206.8 6628.6 7371.7 8114.3	370 446 522 670 956 1320 1624 2288 3000	

Mott MacDonald Pvt Ltd		Page 3
Unit No. 101, 1st Floor, Nom		
Hiranandani Garden, Powai, M		
Maharashtrs, 400076 India		Micro
Date 9/12/2024 11:54 AM	Designed by NAI101538	
File AT02 Pond.SRCX	Checked by	Diamage
Innovyze	Source Control 2020.1.3	
_		
<u>Ra</u>	infall Details	
Rainfall Mode	el FEH	
Return Period (years	1000	
FEH Rainfall Versic	2013	
Data Typ	De 140358 931952 NB 40338 31952 Point Point	
Summer Storn	ns Yes	
Winter Storn	ns Yes	
Cv (Summer Cv (Winter	c) 1.000	
Shortest Storm (mins	5) 15	
Longest Storm (mins	s) 5760 2 149	
	0.4.1	
Tin	ne Area Diagram	
Tota	$(h_1) = (h_2) = 3 = 262$	
1012	AL ALEA (IIA) 3.202	
Time (mins) Area Ti From: To: (ba) Fr	me (mins) Area Time (mins) Area	
0 4 1.087	4 8 1.087 8 12 1.087	
©198	2-2020 Innovyze	

Mott MacDonald Pvt Ltd				Page 4
Unit No. 101, 1st Floor, Nom				
Hiranandani Garden, Powai, M				
Maharashtrs, 400076 India				Micro
Date 9/12/2024 11:54 AM	Designed by N	AI101538		
File AT02 Pond.SRCX	Checked by			Diamage
Innovyze	Source Contro	1 2020.1.3		
<u> </u>	<u>Model Details</u>			
Storage is On	line Cover Level	(m) 51.100		
Tank	or Pond Struct	ure		
Inve	rt Level (m) 49.9	900		
Depth (m) Area (m²) Dep	oth (m) Area (m²)	Depth (m) A	Area (m²)	
0.000 2500.0	0.800 2943.5	5 1.100	3119.1	
Hydro-Brake®	<u>Optimum Outfl</u>	.ow Control		
Unit	Reference MD-SH	F-0372-8500-0	800-8500	
Desig	n Head (m)	E 0372 0300 0	0.800	
Design	Flow (l/s)		85.0	
	Flush-Flo™ Objective Mini	Ca mise unstream	alculated	
А	pplication	mise upstream	Surface	
Sump	Available		Yes	
Dia	meter (mm)		372	
Invert Minimum Outlet Pipe Dia	Level (m) meter (mm)		49.900 450	
Suggested Manhole Dia	meter (mm)		2100	
Control Po	ints Head	(m) Flow (l/s)	
Design Point (Ca	alculated) 0.8	800 85.	0	
E	Flush-Flo™ 0.4	96 85.	0	
Mean Flow over L	Kick-Flo® 0.7	'11 80. - 61	2 a	
Heali Flow Over 1	lead Malige	01.	5	
The hydrological calculations have b Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised the invalidated	een based on the Should another t n these storage	Head/Dischar ype of contro routing calcu	rge relatio ol device o lations wi	onship for the other than a .ll be
Depth (m) Flow (1/s) Depth (m) Flow	v (l/s) Depth (m)	Flow (l/s)	Depth (m)	Flow (l/s)
0.100 10.5 1.200	103.4 3.000	161.7	7.000	244.9
0.200 37.2 1.400	111.5 3.500	174.3	7.500	253.4
0.400 83.9 1.800	126.0 4.000) 197.2	8.500	∠o⊥.5 266.7
0.500 85.0 2.000	132.6 5.000	207.6	9.000	274.6
0.600 83.9 2.200	139.0 5.500	217.6	9.500	282.3
0.800 85.0 2.400	145.0 6.000	227.1		
1.000 94.7 2.600	150.8 6.500	236.2		
©198	32-2020 Innovy	ze		

C. Water Quality Simple Index Approach

SIMPLE INDEX APPROACH: AN INTRODUCTION

1. The tool has been developed on behalf of SEPA to support the implementation (in Scotland) of the water quality management design methods set out in the SuDS Manual.

2. This tool provides an automated method for applying the Simple Index Approach to check the sufficiency of proposed SuDS components in mitigating water quality risks to receiving waterbodies.

3. There are some differences in the required approach in England, Wales and Northern Ireland. If the tool is used in these regions, the relevant supporting 'Design Conditions' stated by the tool must be fully considered and implemented.

4. Water quality design criteria and standards are set out in Chapter 4 of the SuDS Manual. Table 4.3 in the Manual sets out the minimum water quality management requirements for discharges to receiving surface waters and groundwater. Use of the Simple Index Approach is one of the key methods.

5. Chapter 26 of the SuDS Manual sets out the design methods for water quality management. The Simple Index Approach is described in Section 26.7.1 of the Manual and this text should be referred to when using this tool. Appendix C of the SuDS Manual also includes worked examples of applying the Simple Index Approach, although not using this tool.

6. The spreadsheet consists of 5 separate sheets as follows:

Sheet Number	Sheet Title	Sheet Description
1	Introduction (this sheet)	Introduction and context
2	The Tool	The tool (requiring user inputs)
3	Flowchart	A flowchart describing the process required to be taken by a tool user
4	Summary	Printable results summary table
5	Land Use Hazard Indices	The hazard indices used by the tool for each land use hazard type (for information only)
6	SuDS Pollution Mitigation Indices	The pollution mitigation indices used by the tool for each SuDS component type (for information only)

HR Wallingford shall not be liable for any direct or indirect damage claim, loss, cost, expense or liability howsoever arising out of the use or impossibility to use the tools, even when HR Wallingford has been informed of the possibility of the same. The user hereby indemnifies HR Wallingford from and against any damage claim, loss, expense or liability resulting from any action taken against HR Wallingford that is related in any way to the use of the tool or any reliance made in respect of the output of such use by any person whatsoever. HR Wallingford does not guarantee that the tool's functions meet the requirements of any person, nor that the tool is free from errors.

SIMPLE INDEX APPROACH: TOOL

HRW shall not be liable for any direct or indirect damage claim, loss, cost, expense or liability howsoever arising out of the use or impossibility to use the tools, even when HRW has been informed of the possibility of the same. The user hereby indemnifies HRW from and against any damage claim, loss, expense or liability resulting from any action taken against HRW that is related in any way to the use of the tool or any reliance made in respect of the output of such use by any person whatsoever. HRW does not guarantee that the tool's functions meet the requirements of any person, nor that the tool is free from errors.

1. The steps set out in the tool should be applied for each inflow or 'runoff area' (ie each impermeable surface area separately discharging to a SuDS component). 2. The supporting 'Design Conditions' stated by the tool must be fully considered and implemented in all cases. 3. Relevant design examples are included in the SuDS Manual Appendix C. 4. Each of the steps below are part of the process set out in the flowchart on Sheet 3. 5. Sheet 4 summarises the selections made below and indicates the acceptability of the proposed SuDS components. DROP DOWN LIST RELEVANT INPUTS NEED TO BE SELECTED FROM THESE LISTS, FOR EACH STEP USER ENTRY USER ENTRY CELLS ARE ONLY REQUIRED WHERE INDICATED BY THE TOOL STEP 1: Determine the Pollution Hazard Index for the runoff area discharging to the proposed SuDS scheme This step requires the user to select the appropriate land use type for the area from which the runoff is occurring f the land use varies across the 'runoff area', either: - use the land use type with the highest Pollution Hazard Index - apply the approach for each of the land use types to determine whether the proposed SuDS design is sufficient for all. If it is not, consider collecting more hazardous runoff separately and providing additional treatment. If the generic land use types suggested are not applicable, select 'Other' and enter a description of the land use of the runoff area and agreed user defined indices in the row below the drop down lists. Pollution Hazard Indices DESIGN CONDITIONS Total Susper Hazard Runoff Area Land Use Description Solids Hydrocarbons 2 In Scotland and Northern Ireland, the Where indices are approved by the environmental regulator should be consulted as environmental regulator as part of the required risk assessment process, these should be Risk sites. In England and Wales, the Select land use type from the drop down li (or 'Other' if none applicable); entered in the 'User Defined Indices' row below. If environmental regulator should be consulted prior Enter User indices are not considered appropriate, the risk to design (for pre-permitting advice) to determine Defined Indices assessment should use alternative measures of the most appropriate design approach and pollution hazard for the site. requirements for risk assess row below If the generic land use types in the drop down list above are not applicable, select 'Other' and enter a description of the land use of the runoff area and agreed user Construction areas to facilitate high-voltage substation and converter station installation. defined indices in this row: 0.8 0.8 0.9 Landuse Pollution Hazard Index 0.9 0.8 0.8 STEP 2A: Determine the Pollution Mitigation Index for the proposed SuDS components This step requires the user to select the proposed SuDS components that will be used to treat runoff - before it is discharged to a receiving surface waterbody or downstream infiltration component If the runoff is discharged directly to an infiltration component, without upstream treatment, select 'None' for each of the 3 SuDS components and move to Step 2B This step should be applied to evaluate the water quality protection provided by proposed SuDS components for discharges to receiving surface waters or downstream infiltration components (note: in England and Wales this will include components that allow any amount of infiltration, however small, even where infiltration is not specifically accounted for in the design). f you have fewer than 3 components, select 'None' for the components that are not required If the proposed component is bespoke and/or a proprietary treatment product and not generically described by the suggested components, then 'Proprietary treatment system' or 'User defined indices'

in the proposed component is bespoke and/or a prophetary treatment product and not generically described by the suggested components, then Prophetary treatment syste should be selected and a description of the component and agreed user defined indices should be entered in the rows below the drop down lists

	SuDS Component Description	Pollution Mitigation Indices Di Total Suspended Solids Metals Hydrocarbons		DESIGN CONDITIONS	2		
Select SuDS Component 1 (i.e. the upstream SuDS component) from the drop down list:	Swale		0.5	0.6	0.6	SuDS components can only be assumed to deliver these indices if they follow design guidance with respect to hydraulics and treatment set out in the relevant technical component chapters of the SuDS Manual. See also checklists in Appendix B	

3

This step should be applied where a SuDS component is specifically designed to infiltrate runoff (note: in England and Wales this will include components that allow any amount of infiltration, however small, even where infiltration is not specifically accounted for in the design).

'Groundwater protection' describes the proposed depth of soil or other material through which runoff will flow between the runoff surface and the underlying groundwater.

Where the discharge is to surface waters and risks to groundwater need not be considered, select 'None'

If the proposed groundwater protection is bespoke and/or a proprietary product and not generically described by the suggested measures, then a description of the protection and agreed user defined ndices should be entered in the row below the drop down list DESIGN CONDITIONS

		Pollution Mitigation Indices						
			Total Suspended Solids	Metals	Hydrocarbons	1		2
Select type of groundwater protection from the drop down list:	None							
If the proposed groundwater protection is bespoke/proprietary and/or the generic indices above are not considered appropriate, select 'Proprietary product' or 'User defined indices' and enter a description of the protection and agreed user defined indices in this row:	Groundwater Protection Pollution Mitigation Index		0	0	0			

STEP 2C: Determine the Combined Pollution Mitigation Indices for the Runoff Area

This is an automatic step which combines the proposed SuDS Pollution Mitigation Indices with any Groundwater Protection Pollution Mitigation Indices

	Combined Pollution Mitigation Indices Total Suspended		
	Solids	Metals	Hydrocarbons
Combined Pollution Mitigation Indices for the Runoff Area	0.95	>0.95	>0.95

Note: If the total aggregated mitigation index is > 1 (which is not a realistic outcome), then the outcome is fixed at ">0.95". In this scenario, the proposed components are likely to have a very high mitigation potential for reducing pollutant levels in the runoff and should be sufficient for any proposed land use (note: where risk assessment is required, this outcome would need more detailed verification).

3

Λ

STEP 2D: Determine Sufficiency of Pollution Mitigation Indices for Selected SuDS Components

This is an automatic step which compares the Combined Pollution Mitigation Indices with the Land Use Hazard Indices, to determine whether the proposed components are sufficient to manage each pollutant category type

When the combined mitigation index exceeds the land use pollution hazard index, then the proposed components are considered sufficient in providing pollution ris In England and Wales, where the discharge is to protected surface waters or groundwater, an additional treatment component (ie over and above that required for r required that provides environmental protection in the event of an unexpected pollution event or poor system performance. Protected surface waters are those desi protected groundwater resources are defined as Source Protection Zone 1. In Northern Ireland, a more precautionary approach may be required and this should be basis	onsidered sufficient in providing pollution risk mitigation. conent (ie over and above that required for standard discharges), or other equivalent protection, is ce. Protected surface waters are those designated for drinking water abstraction. In England and Wales, pproach may be required and this should be checked with the environmental regulator on a site by site			DESIGN CONDITIONS
	<i>Sufficie</i> Total Suspen Solids	ency of Pollution M ded Metals	litigation Indices Hydrocarbons	1
	Sufficient	Sufficient	Sufficient	Reference to local planning documents should also be made to identify any additional protection required for sites due to habitat conservation (see <i>Chapter 7 The SuDS</i> design process). The implications of developments on or within close proximity to an area with an environmental designation, such as a Site of Special Scientific Interest (SSSI), should be considered via consultation with relevant conservation bodies such as Natural Enpland

SIMPLE INDEX APPROACH: PROCESS FLOW CHART

HRW shall not be liable for any direct or indirect damage claim, loss, cost, expense or liability howsoever arising out of the use or impossibility to use the tools, even when HRW has been informed of the possibility of the same. The user hereby indemnifies HRW from and against any damage claim, loss, expense or liability resulting from any action taken against HRW that is related in any way to the use of the tool or any reliance made in respect of the output of such use by any person whatsoever. HRW does not guarantee that the tool's functions meet the requirements of any person, nor that the tool is free from errors.

SIMPLE INDEX APPROACH: SUMMARY TABLE

HRW shall not be liable for any direct or indirect damage claim, loss, cost, expense or liability howsoever arising out of the use or impossibility to use the tools, even when HRW has been informed of the possibility of the same. The user hereby indemnifies HRW from and against any damage claim, loss, expense or liability resulting from any action taken against HRW that is related in any way to the use of the tool or any reliance made in respect of the output of such use by any person whatsoever. HRW does not guarantee that the tool's functions meet the requirements of any person, nor that the tool is free from errors.

SUMMARY TABLE		DESIGN CONDITIONS				
		1	2	3		
Land Use Type Pollution Hazard Level Pollution Hazard Indices TSS Metals Hydrocarbons	Construction areas to facilitate high-voltage substation and converter station installation. 0.8 0.8 0.9	Where indices are approved by the environmental regulator as part of the required risk assessment process, these should be entered in the 'User Defined Indices' row below. If indices are not considered appropriate, the risk assessment should use alternative measures of pollution hazard for the site.	In Scotland and Northern Ireland, the environmental regulator should be consulted as part of the licensing process required for High Risk sites. In England and Wales, the environmental regulator should be consulted prior to design (for pre-permitting advice) to determine the most appropriate design approach and requirements for risk assessment.			
SuDS components proposed						
Component 1	Swale	SuDS components can only be assumed to deliver these indices if they follow design guidance with respect to hydraulics and treatment set out in the relevant technical component chapters of the SuDS Manual. See also checklists in Appendix B				
Component 2	Detention basin	SuDS components can only be assumed to deliver these indices if they follow design guidance with respect to hydraulics and treatment set out in the relevant technical component chapters of the SuDS Manual. See also checklists in Appendix B				
Component 3	Filter drain (where the trench is not designed as an infiltration component)	SuDS components can only be assumed to deliver these indices if they follow design guidance with respect to hydraulics and treatment set out in the relevant technical component chapters of the SuDS Manual. See also checklists in Appendix B	Filter drains should be preceded by upstream component(s) that trap(s) silt, or designed specifically to retain sediment in a separate zone, easily accessible for maintenance, such that the sediment will not be re-suspended in subsequent events			
SuDS Pollution Mitigation Indices						
TSS	0.95					
Metals	>0.95					
Hydrocarbons	>0.95					
Groundwater protection type Groundwater protection Pollution Mitigation Indices TSS Metals	None 0 0					
Hydrocarbons						
Combined Pollution Mitigation Indices TSS Metals Hydrocarbons Acceptability of Pollution Mitigation TSS Metals Hydrocarbons	0.95 >0.95 >0.95 Sufficient Sufficient Sufficient	Reference to local planning documents should also be made to identify any additional protection required for sites due to habitat conservation (see Chapter 7 The SuDS design process). The implications of developments on or within close proximity to an area with an environmental designation, such as a Site of Special Scientific Interest (SSSI), should be considered via consultation with relevant conservation bodies such as Natural England				

4

SIMPLE INDEX APPROACH: LAND USE HAZARD INDICES

HRW shall not be liable for any direct or indirect damage claim, loss, cost, expense or liability howsoever arising out of the use or impossibility to use the tools, even when HRW has been informed of the possibility of the same. The user hereby indemnifies HRW from and against any damage claim, loss, expense or liability resulting from any action taken against HRW that is related in any way to the use of the tool or any reliance made in respect of the output of such use by any person whatsoever. HRW does not guarantee that the tool's functions meet the requirements of any person, nor that the tool is free from errors.

Land use characterisation (User Define)		Pollution Hazard Level (Tool Outcome)	Pollution Indices (Tool Outcome) Total		Dutcome)	DESIGN CONDITION (Tool Outcome)	
			Suspended Solids	Metals	Hydrocarbons	1	
LAND USE	ТҮРЕ						
ROOF	Residential roofing Commercial/Industrial roofing: Inert materials	Very low Very low	0.2 0.3	0.2 0.2	0.05 0.05	This classification should be informed by an assessment of the leachability of metals	
	Commercial/Industrial roofing: Low potential for metal leachin	Low	0.3	0.4	0.05	from the adopted roofing materials. Particular risks are likely to be posed by materials that include copper and galvanised steel This classification should be informed by an assessment of the leachability of metals from the adopted roofing materials. Particular risks are likely to be posed by materials	
	Commercial/Industrial roofing: Medium potential for metal lead	Medium	0.3	0.6	0.05	that include copper and galvanised steel This classification should be informed by an assessment of the leachability of metals from the adopted roofing materials. Particular risks are likely to be posed by materials	
	Commercial/Industrial roofing: High potential for metal leaching	High	0.3	0.8	0.05	that include copper and galvanised steel	
PARKING	Individual driveway Residential parking	Low Low	0.5 0.5	0.4 0.4	0.4		
	Non-residential parking with infrequent change (e.g. schools, offices, < 300 traffic movements a day) Non-residential car parking with frequent change (eg	Low	0.5	0.4	0.4		
	hospitals, retail)	Medium	0.7	0.6	0.7		
YARDS/DEPOTS	Standard commercial yard or delivery area	Medium	0.7	0.6	0.7	This classification is not appropriate for haulage yards, lorry parks, waste management areas, or chemical storage/handling zones	
	Haulage yard	High	0.8	0.8	0.9	These indices should only be used if considered appropriate by the required risk assessment and where approved by the regulator. If they are not considered appropriate, the risk assessment should use alternative measures of pollution hazard for the site.	
	Lorry park	High	0.8	0.8	0.9	These indices should only be used if considered appropriate by the required risk assessment and where approved by the regulator. If they are not considered appropriate, the risk assessment should use alternative measures of pollution hazard for the site.	
	Waste handling/management/distribution site	High	0.8	0.8	0.9	These indices should only be used if considered appropriate by the required risk assessment and where approved by the regulator. If they are not considered appropriate, the risk assessment should use alternative measures of pollution hazard for the site.	
	Site where chemicals and fuels (other than domestic fuel oil) are to be delivered, handled, stored, used or manufactured	High	0.8	0.8	0.9	These indices should only be used if considered appropriate by the required risk assessment and where approved by the regulator. If they are not considered appropriate, the risk assessment should use alternative measures of pollution hazard for the site.	
	Other industrial site area	High	0.8	0.8	0.9	These indices should only be used if considered appropriate by the required risk assessment and where approved by the regulator. If they are not considered appropriate, the risk assessment should use alternative measures of pollution hazard for the site.	
	Low traffic roads (e.g. residential roads and general access						
ROADS	roads, < 300 traffic movements/day) Roads (excluding low traffic roads, highly frequented lorry approaches to industrial estates, trunk roads/motorways)	Low Medium	0.5 0.7	0.4 0.6	0.4		
		1.1				These indices should only be used if considered appropriate by the required risk assessment and where approved by the regulator. If they are not considered appropriate, the risk assessment should use alternative measures of pollution hazard for the site.	
	Hignly frequented forry approaches to industrial estates	High	0.8	0.8	0.9		

DESIGN CONDITION (Tool Outcome)

2

In Scotland and Northern Ireland, the environmental regulator should be consulted as part of the licensing process required for High Risk sites. In England and Wales, the environmental regulator should be consulted prior to design (for pre-permitting advice) to determine the most appropriate design approach and requirements for risk assessment.

In Scotland and Northern Ireland, the environmental regulator should be consulted as part of the licensing process required for High Risk sites. In England and Wales, the environmental regulator should be consulted prior to design (for pre-permitting advice) to determine the most appropriate design approach and requirements for risk assessment.

In Scotland and Northern Ireland, the environmental regulator should be consulted as part of the licensing process required for High Risk sites. In England and Wales, the environmental regulator should be consulted prior to design (for pre-permitting advice) to determine the most appropriate design approach and requirements for risk assessment.

In Scotland and Northern Ireland, the environmental regulator should be consulted as part of the licensing process required for High Risk sites. In England and Wales, the environmental regulator should be consulted prior to design (for pre-permitting advice) to determine the most appropriate design approach and requirements for risk assessment.

In Scotland and Northern Ireland, the environmental regulator should be consulted as part of the licensing process required for High Risk sites. In England and Wales, the environmental regulator should be consulted prior to design (for pre-permitting advice) to determine the most appropriate design approach and requirements for risk assessment.

In Scotland and Northern Ireland, the environmental regulator should be consulted as part of the licensing process required for High Risk sites. In England and Wales, the environmental regulator should be consulted prior to design (for pre-permitting advice) to determine the most appropriate design approach and requirements for risk assessment.

	Trunk roads/motorways	High	n/a	n/a	n/a	When designing SuDS for motorways / trunk roads, the guidance and risk assessment process set out in HD45/09 should always be followed. These indices should only be used if considered appropriate as part of any detailed risk assessment undertaken for the scheme
OTHER	Other					Where indices are approved by the environmental regulator as part of the required risk assessment process, these should be entered in the 'User Defined Indices' row below. If indices are not considered appropriate, the risk assessment should use alternative measures of pollution hazard for the site.

In Scotland and Northern Ireland, the environmental regulator should be consulted as part of the licensing process required for High Risk sites. In England and Wales, the environmental regulator should be consulted prior to design (for pre-permitting advice) to determine the most appropriate design approach and requirements for risk assessment.

SIMPLE INDEX APPROACH: POLLUTION MITIGATION INDICES

RW shall not be liable for any direct or indirect damage claim, loss, cost, expense or liability howsoever arising out of the use or impossibility to use the tools, even when HRW has been informed of the use of isobility for any action taken against HRW that is related in any way to the use of the tool or any reliance made in respect of the output of such use by any person whatsoever. HRW does not guarantee that the tool's functions meet the requirements of any person, nor that the tool is free from errors.

GROUNDWATER POLLUTION MITIGATION INDICES	Pollution Mitigation Indices (Tool Outcome) Total Suspended Solids	Metals	Hydrocarbons	DESIGN CONDITION (Tool Outcome)	DESIGN CONDITION (Tool Outcome)	DESIGN CONDITION
Dense vegetation layer underlain by 300 mm minimum depth of soils with good contamination attenuation rotential				All designs must include a minimum of 1 m unsaturated depth of subsoil or aquifer material between the infiltration surface and the maximum likely groundwater level. Infiltration components should always be preceded by upstream component(s) that trap(s) sit, or designed specifically to retain sediment in a separate lined zone, easily accessible for maintenance, such that the sediment will not be	The underlying soils must provide good contaminant attenuation potential (eg as recommended in Sniffer 2008 (a) and (b) / Scott Wilson (2010) or other appropriate guidance). Alternative depth and soil combinations must provide activated to the two inderlying argumentater	
300 mm minimum depth of soils with good contamination attenuation potential	0.4	4 0.3	0.0	All designs must include a minimum of 1 m unsaturated depth of subsoil or aquifer material between the infiltration surface and the maximum likely groundwater level. Infiltration components should always be preceded by upstream component(s) that trap(s) silt, or designed specifically to retain sediment in a separate lined zone, easily accessible for maintenance, such that the sediment will not be fre-suspended in subsequent events	The underlying soils must provide good contaminant attenuation potential (eq as recommended in Sniffer 2008 (a) and (b) / Scott Wilson (2010) or other appropriate guidance). Alternative depth and soil combinations must provide equivalent protection to the underlying groundwater	
Infiltration trench with suitable depth of filtration material underlain by 300 mm minimum depth of soils with good contamination attenuation potential	0.4	٥.4	0.4	All designs must include a minimum of 1 m unsaturated depth of subsoil or aquifer material between the infiltration surface and the maximum likely groundwater level. Infiltration components should always be preceded by upstream component(s) that trap(s) silt, or designed specifically to retain sediment in a separate lined zone, easily accessible for maintenance, such that the sediment will not be tresuspended in subsequent events	The infiltration trench must include a suitable depth filtration layer that provides treatment (ie graded gravel with sufficient smaller particles but not single size coarse aggregate such as 20mm gravel). The underlying soils must provide good contaminant attenuation potential (eg as recommended in Sniffer 2008 (a) and (b) / Scott Wilson (2010) or other appropriate guidance). Alternative depth and soil combinations must provide equivalent protection to the underlying groundwater	
Pervious pavement underlain by 300 mm minimum depth of soils with good contamination attenuation potential	0.7	0.6	0.7	All designs must include a minimum of 1 m unsaturated depth of subsoil or aquifer material between the infiltration surface and the maximum likely groundwater level. Infiltration components should always be preceded by upstream component(s) that trap(s) sit, or designed specifically to retain sediment in a separate lined zone, easily accessible for maintenance, such that the sediment will not be re-suspended in subsequent events	The permeable pavement must include a suitable filtration layer provides treatment and must include a geotextile at the base separating the foundation from the sub-grade. The underlying soils must provide good contaminant attenuation potential (eg as recommended in Sniffer 2008 (a) and (b) / Scott Wilson (2010) or other appropriate guidance). Alternative depth and soil combinations must provide equivalent protection to the underlying groundwater	
Bioretention component underlain by 300 mm minimum depth of soils with good contamination attenuation potential	0.8	3 0.8	0.0	All designs must include a minimum of 1 m unsaturated depth of subsoil or aquifer material between the infiltration surface and the maximum likely groundwater level. Infiltration components should always be preceded by upstream component(s) that trap(s) silt, or designed specifically to retain sediment in a separate lined zone, easily accessible for maintenance, such that the sediment will not be fre-suspended in subsequent events	The underlying soils must provide good contaminant attenuation potential (eg as recommended in Sniffer 2008 (a) and (b) / Scott Wilson (2010) or other appropriate guidance). Alternative depth and soil combinations must provide equivalent protection to the underlying groundwater	
Proprietary product				Detailed assessment of performance of designed component in reducing inflow concentrations of each pollutant type required as evidence of adopted indices. Enter indices approved by the environmental regulator in appropriate 'User Defined Indices' row below	All designs must include a minimum of 1 m unsaturated depth of subsoil or aquifer material between the infiltration surface and the maximum likely groundwater level. Infiltration components should always be preceded by upstream component(s) that trap(s) silt, or designed specifically to retain sediment in a separate lined zone, easily accessible for maintenance, such that the sediment will not be re-suspended in subsequent events	SEPA only considers p exceptional circumstar are not practicable. Pr considered appropriate where there is a requir (SEPA, 2014) also pro on suitability of a propr
User defined indices				Detailed assessment of performance of designed component in reducing inflow concentrations of each pollutant type required as evidence of adopted indices. Enter indices approved by the environmental regulator in appropriate 'User Defined Indices' row below	All designs must include a minimum of 1 m unsaturated depth of subsoil or aquifer material between the infiltration surface and the maximum likely groundwater level. Infiltration components should always be preceded by upstream component(s) that trap(s) sit, or designed specifically to retain sediment in a separate lined zone, easily accessible for maintenance, such that the sediment will not be re-suspended in subsequent events	
None						
SURFACE WATER POLLUTION MITIGATION INDICES	Pollution Mitigation Indices (Tool Outcome) Total Suspended Solids	Metals	Hydrocarbons	COMMENT (Tool Outcome)		
Filter strip	0.4	¢ 0.4	0.5	SuDS components can only be assumed to deliver these indices if they follow design guidance with respect to hydraulics and treatment set out in the relevant technical component chapters of the SuDS Manual. See also checklists in Appendix B		
Filter drain (where the trench is not designed as an infiltration component)	0.4	4 0.4	0.4	SuDS components can only be assumed to deliver these indices if they follow design guidance with respect to hydraulics and treatment set out in the relevant technical component chapters of the SuDS Manual. See also checklists in Appendix B	Filter drains should be preceded by upstream component(s) that trap(s) silt, or designed specifically to retain sediment in a separate zone, easily accessible for maintenance, such that the sediment will not be re- suspended in subsequent events	
Swale	0.5	5 0.6	0.6	SuDS components can only be assumed to deliver these indices if they follow design guidance with respect to hydraulics and treatment set out in the relevant technical component chapters of the SuDS Manual. See also checklists in Appendix B		
Bioretention system (where the system is not designed as an infiltration component)	0.8	30.8	0.6	SuDS components can only be assumed to deliver these indices if they follow design guidance with respect to hydraulics and treatment set out in the relevant technical component chapters of the SuDS Manual. See also checklists in Appendix B		
Pervious pavement (where the pavement is not designed as an infiltration component)	0.7	70.6	0.7	SuDS components can only be assumed to deliver these indices if they follow design guidance with respect to hydraulics and treatment set out in the relevant technical component chapters of the SuDS Manual. See also checklists in Appendix B		
Detention basin	0.5	5 0.5	0.6	SuDS components can only be assumed to deliver these indices if they follow design guidance with respect to hydraulics and treatment set out in the relevant technical component chapters of the SuDS Manual. See also checklists in Appendix B		
Pond or writing				SuDS components can only be assumed to deliver these indices if they follow design guidance with respect to hydraulics and treatment set out in the relevant technical component chapters of the SuDS Manual. See also checklists in Annendi R	Ponds/wetlands should be preceded by an upstream component(s) that trap(s) silt, or designed specifically to retain sediment in a separate zone, easily accessible for maintenance, such that the sediment will not be re- suscended in subsequence tevents.	
	0.7	0.7	0.3	4	To the second seco	

(Tool Outcome)	DESIGN CONDITION (Tool Outcome)
3	4
	See Chapter 15 Proprietary treatment systems for approaches to
roprietary treatment systems as appropriate in ces where other types of SuDS component	demonstrate product performance. Note: a British Water/Environment Agency assessment Code of Practice is
oprietary treatment systems may also be	currently under development that will allow manufacturers to
for existing sites that are causing pollution	complete an agreed test protocol for systems intended to treat
rides a flow chart with a summary of checks	at: http://www.britishwater.co.uk/Publications/codes-of-
etary system	practise.aspx.

Proprietary treatment system	0 0		Detailed assessment of performance of designed component in reducing inflow concentrations of each pollutant type required as evidence of adopted indices. Enter indices approved by the environmental regulator in appropriate 'User Defined Indices' row below	SEPA only considers proprietary treatment systems as appropriate in exceptional circumstances where other types of SuDS component are not practicable. Proprietary treatment systems may also be considered appropriate for existing sites that are causing pollution where there is a requirement to retrofit treatment. WAT-RM-08 (SEPA, 2014) also provides a flow chart with a summary of checks on suitability of a proprietary system	See Chapter 15 Proprietary treatment systems for approaches to demonstrate product performance. Note: a British Water/Environment Agency assessment Code of Practice is currently under development that will allow manufacturers to complete an agreed test protocol for systems intended to treat contaminated surface water runoff. Full details can be found at: http://www.britishwater.co.uk/Publications/codes-of-practise.aspx.	
User defined indices	0 0		Detailed assessment of performance of designed component in reducing inflow concentrations of each pollutant type required as evidence of adopted indices. Enter indices approved by the environmental regulator in appropriate 'User Defined Indices' row below			
None	0 0	(

mottmac.com