

TECHNICAL APPENDIX 2.1 DRAINAGE STRATEGY

LT 14 Western Isles HVDC

Arnish Moor Drainage Impact Assessment February 2025 This page left intentionally blank for pagination.

Mott MacDonald St Vincent Plaza 319 St Vincent Street Glasgow G2 5LD United Kingdom

T +44 (0)141 222 4500 mottmac.com

LT 14 Western Isles HVDC

Arnish Moor Drainage Impact Assessment

February 2025

Issue and Revision Record

Revision	Date	Originator	Checker	Approver	Description
P01	16/09/24	E. Walker/ A. Bukhari	A. Ruiz-Diaz	R. McGowan	First Issue.
P02	11/10/24	E. Walker	A. Ruiz-Diaz	R. McGowan	Second Issue with minor changes.
P03	13/11/24	E. Walker	A. Ruiz-Diaz	R. McGowan	Third issue including response to SSE comments.
P04	04/02/25	A. Ruiz-Diaz	A. Ruiz-Diaz	R. McGowan	Planning Submission
P05	17/02/25	E. Walker	A. Ruiz-Diaz	R. McGowan	Updated to include response to SSE Legal comments.

Document reference: 109647-MMD-ARNI-XX-RP-CE-0002 P05

This document is issued for the party which commissioned it and for specific purposes connected with the abovecaptioned project only. It should not be relied upon by any other party or used for any other purpose.

We accept no responsibility for the consequences of this document being relied upon by any other party, or being used for any other purpose, or containing any error or omission which is due to an error or omission in data supplied to us by other parties.

This document contains confidential information and proprietary intellectual property. It should not be shown to other parties without consent from us and from the party which commissioned it.

Contents

Intro	duction	1
1.1	Project Overview and Scope	1
1.2	Site Location	1
1.3	Data Sources	3
1.4	Standards and Guidance	4
Exis	ting Conditions	5
Foul	Water Drainage Strategy	11
3.1	Developed Sites	11
	3.1.1 Proposed Solution	11
	3.1.2 Foul Water Units	12
3.2	Construction Phase	13
Surf	ace Water Drainage Strategy	14
4.1	Design Guidance and Policy	14
	4.1.1 Climate Change	15
	4.1.2 Disposal of Flows	15
4.2	Proposed Surface Water Drainage Strategy: Developed Sites	17
	4.2.1 Permanent Works	18
	4.2.2 Proposed Permanent Development Areas	19
	4.2.3 Pre-Development Runoff Rates for Permanent Structures	19
4.3	Proposed Surface Water Drainage Strategy: Construction Phase	20
	4.3.1 Temporary Features	21
	4.3.2 Proposed Temporary Development Areas	21
	4.3.3 Pre-Development Runoff Rates for Temporary Structures	21
4.4	Post-Development Discharge Rates and Proposed Attenuation Volume	22
4.5	Exceedance Events	22
4.6	Hydraulic Modelling: Convertor Detention Basin (AT-01)	23
Wate	er Quality Control	25
5.1	Developed Site Water Pollution Hazards	25
	5.1.1 External Access Road	26
	5.1.2 Embankments of the Converter Station & Substation Platforms	26
5.2	Construction Phase Water Pollutant Hazards	27
	5.2.1 Transportation of Silts and Fines	27
	5.2.2 Spillage of Hazardous Substances	28
	5.2.3 Waste Materials	28
5.3	Water Quality Design Criteria	28
	 1.1 1.2 1.3 1.4 Exist Foul 3.1 3.2 Surfa 4.1 4.2 4.3 4.4 4.5 4.6 Wate 5.1 5.2 	 1.2 Site Location 1.3 Data Sources 1.4 Standards and Guidance Existing Conditions Foul Water Drainage Strategy 3.1 Developed Sites 3.1.1 Proposed Solution 3.1.2 Foul Water Units 3.2 Construction Phase Surface Water Drainage Strategy 4.1 Design Guidance and Policy 4.1.1 Climate Change 4.1.2 Disposal of Flows 4.2 Proposed Surface Water Drainage Strategy: Developed Sites 4.2.1 Permanent Works 4.2.2 Proposed Permanent Development Areas 4.2.3 Pre-Development Runoff Rates for Permanent Structures 4.3 Proposed Surface Water Drainage Strategy: Construction Phase 4.3.1 Temporary Features 4.3.2 Proposed Temporary Development Areas 4.3.3 Pre-Development Runoff Rates for Temporary Structures 4.4 Post-Development Discharge Rates and Proposed Attenuation Volume 4.5 Exceedance Events 4.6 Hydraulic Modelling: Convertor Detention Basin (AT-01) Water Quality Control 5.1 Developed Site Water Pollution Hazards 5.1.1 External Access Road 5.1.2 Embankments of the Converter Station & Substation Platforms 5.2 Construction Phase Water Pollutant Hazards 5.2.1 Transportation of Silts and Fines 5.2.2 Spillage of Hazardous Substances 5.2.3 Waste Materials

6	Conclusions	29
Appe	endices	30
Α.	Greenfield Runoff Calculations	31
В.	Attenuation Volume Calculations	32
С.	Water Quality Simple Index Approach	33

Tables

Table 1.1: Coordinates of Permanent and Temporary Compound Platforms	2
Table 1.2: Data Sources	3
Table 1.3: Standards and Guidance	4
Table 2.1: Summary of Existing Conditions	5
Table 3.1: Summary of Foul Water Units	12
Table 4.1: Drainage Corridor	18
Table 4.2: Summary of Permanent Impermeable Areas	19
Table 4.3: Permanent Catchment Pre-Development Runoff Rates	19
Table 4.4: Summary of Temporary Impermeable Areas	21
Table 4.5: Temporary Catchment Pre-Development Runoff Rates	22
Table 4.6: Post-Development Discharge Rates	22
Table 4.7: Hydraulic Modelling Parameters	23

Figures

Figure 1-1: Arnish Moor Site Boundary	2
Figure 1-2: Permanent and Temporary Platforms Within Arnish Moor Site with Peat Depths	3
Figure 2-1: Existing Topography of Arnish Moor Site	7
Figure 2-2: Existing Drainage of Arnish Moor Site	8
Figure 2-3: Arnish Moor Scottish Potable Water Assets	8
Figure 2-4: Scottish Water Foul Water Assets	9
Figure 2-5: Geology of Arnish Moor Site	9
Figure 2-6: SEPA Drinking Waters Protected Areas Arnish Moor Site	10
Figure 2-7: SEPA Surface Water Flooding Maps	10
Figure 3-1: Additional land for sewer connection	12
Figure 4-1 Peat zoning with proposed pond locations	16
Figure 4-2 Typical detail of a swale	17
Figure 4-3 Typical detail of a filter drain	18
Figure 4-4 Typical detail of a detention basin with a forebay or settlement lagoon.	20

1 Introduction

This document outlines the Arnish Moor drainage strategy for a proposed High Voltage Direct Current (HVDC) converter station and Alternating Current (AC) substation.

1.1 Project Overview and Scope

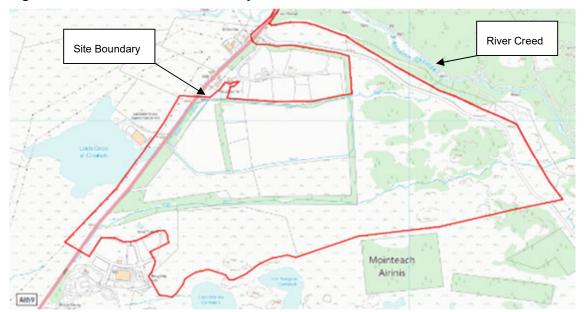
The applicant is seeking Planning Permission in Principle (PPiP) under the 1997 Act for consent to construct and operate a new strategic transmission hub approximately 2km southwest of Stornoway on the Isle of Lewis (the 'Site'). The project is referred to and described as the Lewis Hub (and hereafter also referred to interchangeably as 'the Proposed Development').

Mott MacDonald Limited's (MML) scope of works is designing the site's civil works and platform design, to accommodate the HVDC convertor station within Arnish Moor. Practically the AC substation platform design shall be similar to the adjacent HVDC converter station. The scope does not cover the internal drainage design of the substation and converter station sites and as such these are not discussed within this report.

Also designed by other parties is the HVDC cable route, for which landfall is situated approximately 3- 4km away from the Arnish Moor Site.

The purpose of this report is to provide a high-level summary of the drainage strategy for flows in and out of the site, as well as any impacted watercourses. Any land drains impacted shall be diverted where necessary, to tributaries of the nearest watercourse, the River Creed.

Both the temporary works during construction, including laydown areas and permanent works and operation phase are considered in this report.


The site features are as follows:

- Permanent Access Roads proposed roads connecting to A859 and the Arnish Road shall provide access to the AC substation and Converter station.
- HVDC Converter Station Site Platform Site platform to be +55.500 mAOD,
 - HVDC Convertor Station Located within platform,
 - o Internal site roads.
- AC GIS Substation Platform Site Platform to be +55.500 mAOD,
 - AC 400kV 132kV GIS substation Located within platform,
 - o Internal site roads.
- Temporary Construction Compounds
 - Laydown Area 2 To be at 55.50mAOD with an area of 39,900m²
 - $\circ~$ Laydown Area 3 To be 55.50mAOD with an area of 20,500m^2 .

1.2 Site Location

The new proposed site for converter station and substation are to be located within the Arnish Moor site and adjacent to Macaulay Farm & College, an education centre for students with special needs, east of the A859 and south of Lews Castle and the existing Marybank Quarry. Stornoway township lies north-east of the site. Next Figure shows the Arnish Moor site boundary.

Figure 1-1: Arnish Moor Site Boundary

Source: SSEN Red Line Boundary Site 8 Macaulay Farm LT14-LEWI-0802-DR-0001

The proposed layout that indicates the AC Substation, HVDC Convertor Station and all Laydown Areas is shown in Figure 1-2, Laydown area 1 was removed during optioneering. Table 1.1: Coordinates of Permanent and Temporary Compound Platforms gives the coordinates (centrally at the platforms) of the permanent converter station and substation platforms as well as the associated temporary construction compounds (TCCs).

Table 1.1: Coordinates of Permanent and Temporary Compound Platforms	Table 1.1: Coordinates of Permanent and Temporary Con	pound Platforms
--	---	-----------------

Reference	Permanent/ Temporary	Easting (m)	Northing (m)
AC Substation	Permanent	140402	931769
HVDC Converter Station	Permanent	140656	931823
Laydown Area 2	Temporary	140006	931715
Laydown Area 3	Temporary	140848	931966

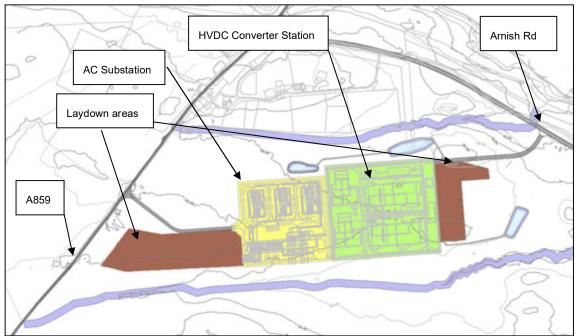


Figure 1-2: Permanent and Temporary Platforms Within Arnish Moor Site with Peat Depths

Source: Proposed Permanent Surface Water Layout - 109647-MMD-ARNI-XX-DR-CE-0003.

1.3 Data Sources

The following data sources have been used for this assessment:

Table 1.2: Data Sources

Name	File Ref	Source	Date Received	Revision
Aerial Maps	-	Microsoft, Bing Maps	August 2024	-
OS Mapping	0100022432	Ordnance Survey	-	-
British Geological Survey (BGS) Website	-	BGS website	August 2024	-
Redline Boundary Site 8 Macaulay Farm	LT14-LEWI-0802-DR-0001	SSEN	April 2024	P03
LT14 Western Isles HVDC Drainage Design Planning Support Scope of Works	-	SSEN	-	-
SSEN LT14 Lewis Substation & Convertor Hub Layout Design Basis Statement	LT14-SSEN-XX-XX-RP-C-001	SSEN	July 2024	00
Arnish Moor Permanent Drainage Layout	109647-MMD-ARNI-XX-DR-CE- 0003	Mott MacDonald	November 2024	P03
Arnish Moor Temporary Drainage Layout	109647-MMD-ARNI-XX-DR-CE- 0004	Mott MacDonald	November 2024	P03
Arnish Moor Foul Water Layout	109647-MMD-ARNI-XX-DR-CE- 0001	Mott MacDonald	November 2024	P04

Name	File Ref	Source	Date Received	Revision
Arnish Moor Site Water Supply Layout	109647-MMD-ARNI-XX-DR-CE- 0006	Mott MacDonald	November 2024	P04
LT14 Western Isles Arnish Moor Flood Risk Assessment	109647-MMD-ARNI-XX-RP-CE- 0005	Mott MacDonald	August 2024	P01
Peat Probing Factual Report	109647-MMD-00-XX-RP-GE- 0002	Mott MacDonald	April 2024	В
LT14 Western Isles HVDC Geotechnical and Geoenvironmental Preliminary Desk Study	109647-MMD-00-XX-RP-GE- 004-C	Mott MacDonald	October 2023	С
LT14 Western Isles HVDC Site Observation Note	109647-MMD-00-XX-TN-CE- 0019	Mott MacDonald	August 2023	P01
Standardised Drainage Strategy	ASTIDC-STAN-MMD-DRAI- INFR-RPT-C-0004	SSEN/Tony Gee's	June 2024	P04
Drainage Strategy Drainage Split Network Technical Note	ASTIDC-STAN-MMD-XX-XX- TN-C-0002	SSEN/Tony Gee's	June 2024	P01
Scottish Water Records	-	Scottish Water	August 2024	-
SEPA Flood Maps	-	SEPA	August 2024	-
SEPA Drinking Water Protected Area Maps	-	SEPA	-	-

1.4 Standards and Guidance

The following standards and guidance have been used for this assessment:

Table 1.3: Standards and Guidance

Document Name	Document Reference	Publisher
Building Standards Technical Handbook – Non-Domestic	-	Scottish Government
Gravity drainage systems inside buildings	BS EN 12056-2:2000	British Standards Institute
Local Flood Risk Management Plan	-	Western Isles Council
National Planning Framework 4 (NPF4) 2024	NPF4	Scottish Government
Outer Hebrides Local Development Plan	-	Western Isles Council
SP-NET-CIV-502 Drainage Specification	SP-NET-CIV-502	Scottish Hydro Electric Transmission
SP-PS-419 Transformer Bund Specification	SP-PS-419	Scottish Hydro Electric Transmission
The SuDS Manual	C753	Construction Industry Research and Information Association

2 Existing Conditions

The existing conditions of the Arnish Moor site are summarised in Table 2.1.

Conditions	Description	Source of data
Location	The Arnish Moor site is located just south of Stornoway town on the Isle of Lewis, grid reference NB 140131 931885. The site is on the south-eastern side of the A859 across from Loch Cnoc a' Choilich and south of the existing Marybank Quarry and Mccaulay Farm & College.	Bing Maps
	Western Isles Council are the local authority also known as Comhairle nan Eilean Siar.	
Land use	Macaulay Farm and College, a special needs educational centre offering courses from animal husbandry to construction is adjacent to the greenfield site, with grazing livestock nearby. There are some trees that are intended to be retained. Currently, the land is vacant with a peat bog throughout.	NLS Maps, Bing Maps, Ordnance Survey
Existing Drainage	There is a natural drainage system, within the greenfield area of the site. There may be some existing drainage present within Macaulay Farm which should be kept maintained throughout the works. At this time, there is insufficient GI to assess exact details of existing drainage networks.	Scottish Water records. Bing Maps, Macaulay Farm College Website.
	There are two main watercourses that cross the width of the site, shown in Figure 2.2. There are some field drains that cross the site, which will need to be diverted.	
	The eastern boundary of the site is approximately 70m from the River Creed.	
	A search of the available Scottish Water records for existing sewers and water mains identified an existing combined sewer in the A859.	
Topography	Existing topography for the Arnish Moor site can be viewed on Figure 2.1.	Cyberhawk Topographcal Survey
	The ground slopes from the southwest with high ground of 62 mAOD at Laydown Area 2 and higher ground sloping down towards the site. The rest of the land varies with gentle slopes of 40-60 mAOD, with basin locations of 50m AOD. The ground across Laydown Area 3, the substation and convertor station slope down to Arnish Road and the River Creed. Along the east side of the A859 the land slopes northeast gradually.	
	Around the connection point to the A859 from eastern access road the level is approximately 60 mAOD, the western access road and Arnish Road is 39 mAOD. The converter station and substation are 56m AOD and 58 mAOD respectively.	
Soil Conditions and Geology	Studies have shown bedrock to be Outer Hebrides Thrust Zone Mylonites Complex Protocataclasite and	-LT14 Western Isles – Geotechnical and

Conditions	Description	Source of data
	Lewisian Complex-Gneiss, with a fault line down the middle of the site, shown in Figure 2.5 and the British Geology Survey (BGS) viewer. Also, peat probing has recorded depths of 0.5-4m across the site, with the majority, > 1m. Ground investigation is limited, with further geotechnical records currently being compiled.	Geoenvironmental Preliminary Desk Study. -Peat Probing Factual Report 100109647 109647-MMD-00XX- RP-GE-0002 B.
Ground Permeability	The site is considered low permeability, though with a high ground water table in its current greenfield blanket bog form, infiltration drainage systems such as soakaways would not normally be considered suitable.	Peat Probing Factual Report 100109647 109647-MMD-00XX- RP-GE-0002 B.
Groundwater Levels and Drinking Water Protected Areas	As the Isle of Lewis lies within the Western Isles ground water drinking protected area but not SEPA's surface water drinking water protection area. Measures to protect groundwaters during construction shall be put in place with SEPA. SEPA's long term flood maps indicate low risk of flooding from ground water sources.	British Geological Survey (BGS) andSEPA Drinking Water Protection Areas Maps.
Land Contamination/Geohazards	The risk of contamination is unknown, further geotechnical study is ongoing.	Peat Probing Factual Report 100109647 109647-MMD-00XX- RP-GE-0002 B
Watercourses and Drainage features	There are 2 main land drains that cross the site, north & south to the River Creed, a watercourse to the east of the proposed converter station and substation. The Creed flows north to south. The land drains' source is Loch Cnoc a Choilich, across the A859 south-west of the site. The converter station and substation sites are constrained by the land drains and River Creed to the northeast.	
Flood Risk	A Level 3 Flood Risk Assessment (FRA) with 2D hydraulic analyses based on FEH reFH2 has been carried out including TUFLOW modelling and concluded minimal flood risk to the site. The extent of flooding of the 2 watercourses is unknown and more detailed assessment is required. There are no records of historical flooding of the site. SEPA's flood maps showed that the long-term flooding of the site is: Medium level risk from surface water flooding indicated by historic flood events, shown in Figure 2.7. SEPA's surface water flood map in the northern most extremity shows Loch Cnoc a Choilich has potential to flood with a low probability factor. No river or coastal flooding has been identified. The proposed converter station and substation are located outside of the floodplain of the River Creed. There is a low potential risk of flooding by a reservoir approximately 4km upstream of the River Creed in a very extreme event, as covered by the Flood Risk Assessment.	Arnish Moor Site Level 3 Flood Risk Assessment
Potable Water Mains	The nearest distribution main, feeding from Marybank tank, is a 180mm main in the A859, with a branch close to Macaulay farm which is a scour, there is also a 125mm main in Arnish Road. It is understood that	Scottish Water Records

Conditions	Description	Source of data
	the main in Arnish Road is in the process of being replaced.	
Sewers	There are Scottish Water sewers, a 90mm PE pipe assumed to be a rising main adjacent to the access road junction and a combined 200mm DI pipe, shown in Figure 2.4, further north along the A859.	Scottish Water Records

Figure 2-1: Existing Topography of Arnish Moor Site

Source: Mott MacDonald & https://en-gb.topographic-map.com (2024)

Figure 2-2: Existing Drainage of Arnish Moor Site

Source: Mott MacDonald LT14 – LEWIS – DIA FRA Support Email 13/08.24


Figure 2-3: Arnish Moor Scottish Potable Water Assets

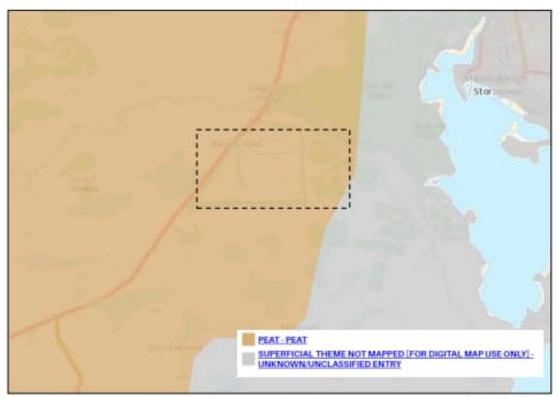

Source: Scottish Water Records, scotwater_20240813_113516_252430.

Figure 2-4: Scottish Water Foul Water Assets

Source: Scottish Water Records Drawing scotwater_20240813_114121_876899.

Source: Extract from BGS GeoIndex Onshore Viewer. Contains British Geological Survey materials © UKRI [2024].

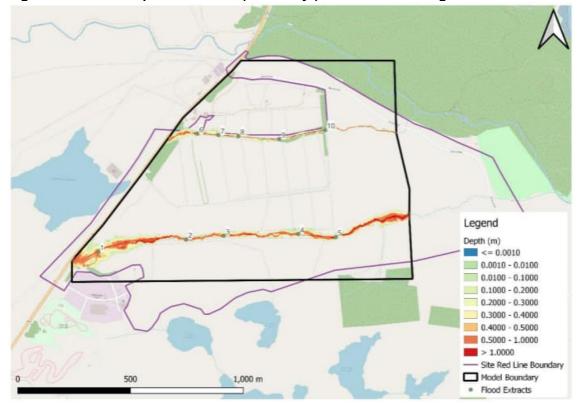


Figure 2-6: Flood Map for 0.1% AEP (1 in 1000yr) with Climate Change Allowance

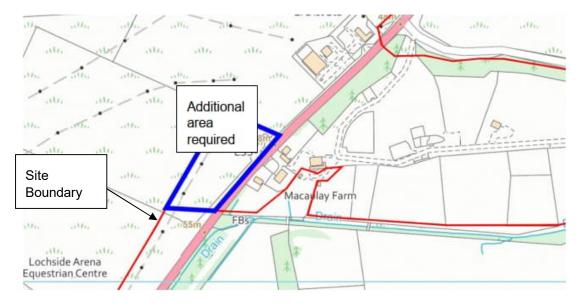
Source: LT14 Western Isles HVDC-Arnish Moor FRA Level 3Flood Risk Assessment Report by Mott MacDonald.

3 Foul Water Drainage Strategy

3.1 Developed Sites

3.1.1 Proposed Solution

There will be welfare facilities within the converter station and substation buildings, therefore permanent foul sewerage is required.


SSE's hierarchy for the disposal of foul flows in SP-NET-CIV-502 is as follows:

'With reference to SEPA Guidance WAT-RM-03, where a connection to an existing sewer is not feasible an appropriate treatment and discharge system shall be provided to comply with CAR license requirements and the associated SEPA guidance in WAT-RM-03.'

Three potentially feasible options have been identified as summarised below.

- Option 1: The first consideration and preferred of the available options, is to convey the foul flows to an existing sewer. The nearest Scottish Water foul sewer to connect to is approximately 500m to the northwest of the site adjacent to A859. Due to the site topography, a gravity sewer connection is not feasible and pumping would be required. This would require a pumping station within the site being maintained by SSE, along with a rising main and sewer offsite adjacent to the A859.
- 2. Option 2: An alternative option, with reference to SEPA Guidance WAT-RM-03, if the technical issues of designing and operating a pumping system for such low flows are such that Option 1 is unfeasible, would be to provide an appropriate package sewerage treatment plant and discharge system, suitable for a population equivalent of 1-2 persons. The most likely outfall for this would be the southern watercourse. This treatment system would be maintained by SSE.
- 3. Option 3: The third potential option is a septic tank discharging through a mounded soakaway, designed to BR 478, Mound Filter Systems for the treatment of domestic wastewater. This could be formed at an area of the site such as Laydown adjacent to the HVDC platform. The natural percolation rates may be out with those suggested within BR 478, Mound Filter Systems for the treatment of domestic wastewater, however as there are up to 3 metres of imported fill, appropriate percolation may be achievable. A traditional soakaway through a field drainage system is not considered appropriate due to the ground conditions.

With regard to Option 1, informal discussions with Scottish Water have primarily indicated that the most appropriate connection is the gravity feed to Creed Pumping Station. This would involve construction adjacent to the rising main/sewer adjacent to the A859, see Figure 2.4 for the assumed connection point and Figure 3-1 for the route of the new rising main and sewer. Scottish Water also indicated that there was a potential connection point in the Business Park to the south of the site but this has been discounted due to the distance from the site and the topography.

Figure 3-1: Additional land for sewer connection

Source: OpenStreet Maps

The Creed Pumping Setation is further downstream and once foul flows from the development are conveyed into the existing pumping station, they will be pumped north to Scottish Water's sewerage system in Stornoway.

The anticipated foul flows from the substation and converter station sites are expected to be low and infrequent. Consequently, implementing a flushing system may be required to reduce the risk of septicity occurring during periods of low usage.

The proposed pumping stations will be provided with a minimum of 24 hours emergency storage.

3.1.2 Foul Water Units

The assumed facilities provided within the converter station and substation are summarised in Table 3.1 below. The discharge units of the proposed facilities have been extracted from BS EN 12056-2:2000 Table 2.

Converter Station / Substation	Facility Type	Number	Discharge Units (I/s)	Σ Discharge Units (I/s)
	WC with 9 litre cistern	2	2.5	5.0
Converter Station	Wash hand basin	2	0.5	1.0
	Kitchen sink	1	1.3	1.3
Substation	WC with 9 litre cistern	4	2.0	8
	Wash hand basin	4	0.5	2
	Kitchen sink	2	1.3	2.6
			Total:	19.9

Table 3.1: Summary of Foul Water Units

Source: Discharge units extracted from BS EN 12056-2:2000 Table 2

The peak foul water flow rate can be calculated using the discharge unit method in accordance with BS EN 12056-2 Section 6.3.1. The proposed design flow associated with the above facilities is Q = k * (DU)1/2.

Where:

k = 0.5 (frequency factor for occasional use).

DU = Total discharge units.

The total number of discharge units for both the converter station and substation is 19.9l/s. Therefore, the peak foul water flow rate from both sites has been calculated as 2.2l/s¹

3.2 Construction Phase

For the temporary construction compounds of both the converter station and substation sites, effluent from site accommodation will be collected in a septic holding tank and removed from site as controlled waste. The foul effluent shall be removed from site by licensed waste disposal companies and the effluent shall be taken to a fully recognised and licensed sewage treatment works.

¹ It is noted that Scottish Water tend to use a different methodology for estimating peak flows. The connection application to Scottish Water is likely to be based on a lower value than this.

4 Surface Water Drainage Strategy

4.1 Design Guidance and Policy

The proposed surface water drainage design is indicated in the next drawings:

- Surface water permanent drainage layout: 109647-MMD-ARNI-XX-DR-CE-0003
- Surface water temporary water layout: 109647-MMD-ARNI-XX-DR-CE-0004

A standard drainage strategy report and technical note have been produced by Tony Gee on behalf of SSEN and MML, the according data for Arnish has been referenced below.

- SSEN-ASTI-HVDC Standardisation Drainage Strategy, ASTIDC-STAN-MMD-DRAI-INFR-RPT-C-0004 Rev P04, Tony Gee prepared for SSEN/MML
- SSEN-ASTI Drainage Split Network Technical Note, ASTIDC-STAN-MMD_XX_XX_TN_C_0002 Rev P01

The drainage strategy for the proposed development has been developed based on the following guidance:

- Flood and Water Management Act 2010²;
- The SuDS Manual (C753)³; and
- Sewers for Scotland 4th Edition
- Scottish Environmental Protection Agency (SEPA) Guidance, SEPA Silt Control Guidance.
- Environmental Standards for River Morphology (WAT-SG-21)⁴
- Engineering in Water Environment River Crossing (WAT-SG-25)⁵
- Engineering in the water environment good practice Sediment Management (WAT-SG-26)⁶
- Engineering in the water environment good practice Temporary Construction (WAT-SG-29)⁷
- SEPA Flood Risk and Controlled Activities Regulations⁸.
- Scottish Planning Policy (SPP, 2014)9;
- Planning Advice Note 61: Sustainable urban drainage systems
- Energy Networks Association ETR 138 Flood Resilience for Critical Infrastructure¹⁰

² Flood and Water Management Act 2010 (2010). [Online]. https://www.legislation.gov.uk/ukpga/2010/29/introduction [Date Accessed: May 2022].

³ CIRIA, The SuDS Manual (2015). [Online]. Available at: <u>https://www.susdrain.org/resources/SuDS_Manual.html</u> [Date Accessed: May /2022].

⁴ SEPA supporting guidance: good practice guides WAT-SG-25 Engineering in Water Environment - River Crossing <u>https://www.sepa.org.uk/media/151036/wat-sg-25.pdf</u>

⁵ SEPA supporting guidance: good practice guides WAT-SG-25 Engineering in Water Environment - River Crossing <u>https://www.sepa.org.uk/media/151036/wat-sg-25.pdf</u>

⁶ SEPA supporting guidance: good practice guides WAT-SG-26 Engineering in Water Environment – Sediment Management <u>https://www.sepa.org.uk/media/151036/wat-sg-26.pdf</u>

⁷ SEPA supporting guidance: good practice guides WAT-SG-29 Engineering in Water Environment - Temporary Construction Methods <u>https://www.sepa.org.uk/media/151036/wat-sg-29.pdf</u>

⁸ "The Water Environment (Controlled Activities) (Scotland) Regulations 2011, A Practical Guide" by SEPA <u>https://www.sepa.org.uk/media/34761/car_a_practical_guide.pdf</u>

⁹ "Scottish Planning Policy" by The Scottish Government, 2014, revised December 2020 <u>https://www.gov.scot/binaries/content/documents/govscot/publications/factsheet/2021/05/transport-scotland-core-documents/documents/policy/scottish-planning-policy-spp/scottish-planning-policy-spp/govscot%3Adocument/scottish-planning-policy.pdf</u>

¹⁰ Engineering Technical Report 138 "Resilience to Flooding of Grid and Primary Substations" by Energy Networks Associations, issue 3 2018 <u>https://www.ena-eng.org/ena-docs/D0C3XTRACT/ENA_ET_138_</u> <u>Annex_Extract_180902050351.pdf</u>

- SSEN Generic Electricity Substation Design Manual for Civil, Structural and Building Engineering:
 - SP-NET-CIV-501 Earthworks, Specification, SSEN, July 2020
 - SP-NET-CIV-502 Drainage Specification, SSEN, July 2020.
 - SP-NET-CIV-503 Pavements and Roadways Specification, SSEN, July 2019.
 - SP-NET-CIV-504 Ducting, Trenching and Trench Covers Specification, SSEN, June 2016.
 - SP-NET-CIV-509 Substation Bunds Specification, SSEN, July 2020.

The SSE specification SP-NET-CIV-502 indicates the "design" standards for the site are as follows:

- 1 in 200-year return period protection for operational areas;
- 1 in 1000-year return period protection for "critical infrastructure" as defined in SSE Specification and Planning Guidance;
- Off-site discharge at 1 in 2-year greenfield runoff rate and 1 in 200-year return period protection for off-site flooding.

4.1.1 Climate Change

SEPA defines allowances for the effects of climate change on peak rainfall intensities. The peak rainfall intensity allowances for each river basin region in accordance with SEPA requirements is 48% allowance of climate change.

It is worth noting that SSE specification SP-NET-CIV-502 states that a climate change allowance of 20% (by factoring the rainfall intensity hyetograph values) shall be applied to FEH rainfall data. A climate change allowance of 48% shall be considered for the surface water drainage design as per SEPA's requirements, embedding conservatism into the surface water drainage design. This climate change allowance value shall be applied to the 1 in 200-year return period, considering no flooding of the operational areas of the permanent converter station and substation platforms.

Similarly, a climate change allowance of 48% has also been applied to the design of the surface water drainage design for the temporary construction compounds. A climate change allowance may not be required for the temporary condition, however this is to be discussed and agreed with SEPA.

4.1.2 Disposal of Flows

It should be acknowledged that the satisfactory collection, control and discharge of storm water is a principal planning and design consideration.

The NPF4 states that for new developments, the best way of reducing flood risk within the development is to:

- Control the water at source through sustainable system (SuDS).
- Consider exceedance flow route when the capacity of the drainage system is exceeded.

SuDS should mimic natural drainage and reduce the amount and rate of water flow by:

- Infiltrating into the ground,
- Holding water in storage areas, and
- Slowing the flow of water.

The design will meet the following discharge hierarchy (with acceptable justification for moving between levels) by the CIRIA C753 SuDS manual:

- 1. Infiltration to the maximum extent that is practical –where it is safe and acceptable to do so.
- 2. Discharge to surface waters.
- 3. Discharge to surface water sewer.
- 4. Discharge to combined sewer (last resort).

It is necessary to identify the most appropriate method of controlling and discharging surface water from the site. Where possible, surface water run-off from the developed site will be drained in such a way as to mimic the natural drainage system and thereby implement a SuDS approach. The design should seek to improve the local run-off profile by using systems that can either attenuate run-off and reduce peak-flow rates or positively impact on the existing flood profile.

The assessment followed to design the runoff flows is in accordance with SSE specification SP-NET-CIV-502 which states that the preferred method of estimating the rainfall depth is to use the depth-duration-frequency rainfall model contained within the Flood Estimation Handbook (FEH).

Due to the high presence of peat, which is underlain by impermeable bedrock, the site is considered low permeability, though with a high ground water table in its current greenfield blanket bog form. Additionally, a shallow groundwater table has been assumed owing to the areas of standing water observed throughout the site. Therefore, in its current greenfield blanket bog form, infiltration drainage systems would not normally be considered suitable and in accordance with the discharge hierarchy specified within the SuDS manual, flows shall instead be attenuated and discharged into the nearest available watercourse. SUDs basins are sited in areas of shallow peat depth, as shown in Figure 4.1.

Figure 4-1 Peat zoning with proposed pond locations

Source: Peat Probing Factual Report 109647-MMD-00-XX-RP-GE-0002

However, it is recognised that constructing SuDS, including detention basins, within a peat covered site will require significant removal of peat. While this DIA illustrates a viable surface water drainage design can be accommodated on the site, adopting what is considered a worst case for peat management, 'the Proposed Development' is committed to reducing the impact of the development, including drainage, on the environment. As the design develops, the Project

will continue to refine the drainage design with the aim of minimising the environmental impact. Several novel approaches are being considered for within and out with the station confines, one of which includes forming low level surface bund arrays within the wider peat in order to diffuse surface runoff around the perimeter of the site and attenuate the drainage without removing the peat.

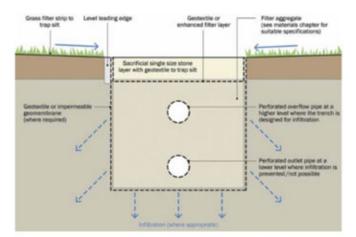
4.2 Proposed Surface Water Drainage Strategy: Developed Sites

Surface water runoffs from both the HVDC convertor station and AC substation site are to be conveyed and attenuated within detention basins north and south respectively of the substation and convertor station, refer to 109647-MMD-ARNI-XX-DR-CE-0003. The outflows shall be limited to the equivalent 1 in 2-year greenfield runoff rates for the respective catchments (Appendix B). The preference of SSEN, is via gravity, however where this is not possible a pumped solution may be used.

The outfall from the detention basins shall discharge into existing drainage ditches/watercourses then to the River Creed. Track access (pavements and roadways) for maintenance vehicles shall be provided to all outfalls. Headwalls shall be provided at all positions where a drainage system discharges into open water.

The entirety of the surface water runoff from the AC substation will be conveyed into a swale then detention basin located in the southeast side of the site. The flow from the HVDC converter station will be conveyed to a standardised single outfall, in the northeast corner of the station, into a detention basin in the northeast of the site.

A permanent swale shall be constructed to the south of the site to convey earthworks & building drainage. There are also natural constrictions to the swales, due to earthwork slopes, that would create a tiered effect and add further levels of treatment, settlement areas prior to entry to the basins will be provided.


In the southwest side of the site, by Laydown area 2 substation cables are planned to be located and therefore these areas shall be kept clear from during the installation of the cables only, a temporary drainage diversion will be required at this area of the site.

Kerbs and gullies are to be installed when required, with filter drains along both sides of the permanent access roads based on the camber, as specified in the standardised documents, to convey surface water runoff from the road. These should be maintained biannually and annually accordingly.

Treatment Plow depth below height of vegetation

Figure 4-2 Typical detail of a swale

Source – The SUDs Manual, CIRIA C753

Source – The SUDs Manual, CIRIA C753

Filter drains are also to be placed at the toe of cuttings to intercept surface water runoff landing directly on the embankments such as along the northwestern walls of the AC substation.

Where there is a potential risk of oily water, such as at transformers, an above ground oil interceptor shall be installed with a connection to the surface water system. Roads adjacent to oily water sites will drain flow through the interceptor. An operation and maintenance plan shall be prepared for all apparatus.

The drainage system within the site platform has not been developed at this stage however the drainage downstream of the Converter Station has been based on a standardised platform layout developed by SSEN. A pipe gradient of 1:200/1:300, falling from one end of the platform to the other has been assumed, with the dimensions shown in Table 4.1.

Drainage Corridor Dimension	Size
Max Corridor Depth/ Width (m)	5.5m
Convertor Station	3.0m
Surface/foul water max pipe diameter	1200mm
	300mm

Table 4.1: Drainage Corridor

Source: SSEN-ASTI-HVDC Standardisation Drainage Strategy, ASTIDC-STAN-MMD-DRAI-INFR-RPT-C-0004 Rev P04, Tony Gee prepared for SSEN/MML)

4.2.1 Permanent Works

The permanent works include the normal features of a converter station and substation: buildings, transformers, internal roads, car parks, earthworks and external access roads.

The AC substation and HVDC converter station design life is 40 years (20 years first life maintenance).

The permanent works include but are not limited to:

- Site platforms of the converter station and substation compounds are to be +55.5mAOD. The site platforms will be constructed from permeable granular stone to attenuate flows.
- Buildings of varying use. A significant proportion of the converter station site is formed of buildings, typically utilising a steel frame construction with cladded exterior, with a reduced number present within the substation site.
- 2 No. permanent access roads to facilitate access within the substation compound.

4.2.2 Proposed Permanent Development Areas

The proposed impermeable areas of the permanent HVDC converter station and AC substation sites are summarised in Table 4.2. The percentage of impermeable areas was calculated by analysing the hardstanding surfaces (Internal roads, bunds, buildings and embankments) against the total area of the site. Permeable areas comprised the remaining areas of the exposed free-draining granular stone of the platform.

Catchment Reference	Total Catchment Area (ha)	Percentage of Impermeable Area (%)	Total Impermeable Area (roads, roofs, transformers bunds) (ha)
AC Substation	6.36	47	2.99
HVDC Converter Station	8.59	57	4.90
Permanent Access Road East	0.39	100	0.39
Permanent Access Road West	0.31	100	0.31

Table 4.2: Summary of Permanent Impermeable Areas

4.2.3 Pre-Development Runoff Rates for Permanent Structures

The greenfield runoff rates have been calculated using the online 'HR Wallingford tool' which follows the IH124 method. Appendix B contains the greenfield runoff rate for each permanent catchment area.

The contributing area, shown in **Table 4.3**, of each site considers the gross area of all catchments of the new development: new embankments, platforms, access roads; all works affected by the new converter station and substation.

Table 4.3: Permanent Catchment Pre-Development Runoff Rates

Tre-Development Runon Rates					
Catchment Area Reference	Contributing Area (ha)	QBAR (I/s)	1 in 2-year (l/s)	1 in 30-year (I/s)	1 in 200-year (I/s)
AC Substation	6.36	107	96	209	304
HVDC Converter Station	8.59	128	116	251	365

Pre-Development Runoff Rates

*Eastern catchment of the permanent access road to discharge at a rate of 5l/s to prevent blockages to the flow control device.

Source: "Greenfield runoff rate estimation for sites" from HR Wallingford, www.uksuds.com

4.3 Proposed Surface Water Drainage Strategy: Construction Phase

As shown in 109647-MMD-00-XX-DR-CE-0003 & 0004, surface water runoff from the temporary construction compounds, laydown areas are to be conveyed into the north and south watercourses via temporary swales which will then be backfilled. Outflows of the widened swales shall be limited to the equivalent 1 in 2-year greenfield runoff rates.

Perimeter swales covering the temporary compounds have been proposed to:

- 1. Intercept overland flows from the areas of higher ground located outside of the proposed development and to;
- 2. Capture any earthworks flows from embankments or at toe or cuttings
- 3. Contain any surface water runoff of the temporary and permanent compounds, therefore preventing any potential pollutants, including silts and fines, entering the surrounding watercourses during the construction stage (Refer to Section 5.2).

The swales to the south of the convertor station and substation will remain to convey the substation land and earthwork drainage.

Temporary drainage is required during the construction of the AC substation and HVDC converter station platforms. Due to the natural topography the swale is not a continual length but with constrictions. In addition to the perimeter swales, settlement lagoons have been proposed to attenuate surface water runoff and collect the volumes of silts/fines transported by the runoff during construction, as shown in next Figure. The settlement lagoons will partly be formed naturally along the length of the swale following the natural topography. The settlement lagoons will outfall into the nearest available watercourse with discharge rates being limited to the equivalent 1 in 2-year greenfield runoff rates shown in Table 4.3.

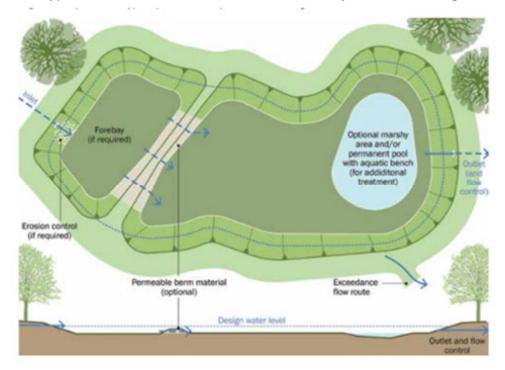


Figure 4-4 Typical detail of a detention basin with a forebay or settlement lagoon.

Source - The SUDs Manual, CIRIA C753.

The temporary settlement lagoons shall be extended and compartmentalised on site by the contractor as necessary to meet water quality standards through settlement and, if required, dosing. Once the platforms of the substation and converter station sites have been constructed, the settlement lagoons shall be modified and utilised as detention basins for the permanent drainage design.

4.3.1 Temporary Features

The temporary features of the proposed construction compounds include but are not limited to:

- Welfare facilities
- Internal roads
- Laydown/storage areas
- Vehicle/plant parking.
- Borrow Areas

Drainage will be constructed to prevent surface water runoff from entering the borrow pit from the adjoining land. Runoff from adjoining land shall be captured (in a perimeter gravel-filled drainage ditch, shallow v-ditch or similar) upslope of the borrow pit footprint. These waters shall then be directed (again via gravel-filled drainage ditch or shallow v-ditch) to a soakaway trench constructed on the downslope side of the borrow pit; or if a watercourse is downslope side of the borrow pit via dispersion sheet. Rainfall landing within the pit, and any groundwater collected within it, shall be directed towards the main headwall and collected in a sump. This water will then be directed, either via pump or by gravity drainage, to a series of settlement management ponds and/ or structures. These in turn will then discharge to soakaway trenches on the downslope side of the borrow pit. After the completion of the Construction phase, the borrow areas will be restored with new final land contours (similar to the pre-development contours/natural contours).

4.3.2 Proposed Temporary Development Areas

The proposed impermeable areas of the temporary HVDC converter station and AC substation construction compounds are highlighted within Table 4.4. The percentage of impermeable area also accounts for the embankments outside of the compound working areas.

Catchment Reference	Total Catchment Area (ha)	Percentage of Impermeable Area (%)	Total Impermeable Area (ha)
Laydown Area 2	4	50	2
Laydown Area 3	2.05	50	1.0

Table 4.4: Summary of Temporary Impermeable Areas

4.3.3 **Pre-Development Runoff Rates for Temporary Structures**

The greenfield runoff rate has been calculated using the online 'HR Wallingford tool' which follows the IH124 method. Appendix B contains the greenfield runoff rate for each temporary catchment area.

The contributing area, shown in **Table 4.5**, of each site considers the gross area of all catchments of the proposed temporary construction compounds: internal roads, laydown areas, car parking and welfare facilities.

Pre-Development Runoff Rates

Catchment Area Reference	Contributing Area (ha)	QBAR (l/s)	1 in 2-year (l/s)	1 in 30-year (l/s)	1 in 200-year (I/s)
Laydown Area 2	4.41	57	56.7	110	161
Laydown Area 3	1.78	23	22.9	45	65

Table 4.5: Temporary Catchment Pre-Development Runoff Rates

Source: "Greenfield runoff rate estimation for sites" from HR Wallingford, www.uksuds.com. Appendix B

4.4 Post-Development Discharge Rates and Proposed Attenuation Volume

Surface water run-off discharging from the development sites into the existing nearby watercourses shall be restricted to an appropriate discharge rate. As noted previously, a significant proportion of the site is currently undeveloped, therefore, in line with local and national guidelines, the flow restriction from the developed site shall be based on the estimated equivalent 1 in 2-year greenfield run-off rate for the undeveloped site.

The proposed discharge rates vary per catchment area; however, they shall be controlled by a suitable flow control device such as a Hydrobrake manhole or an orifice control at the attenuation basin outlet. The diameter of the chosen flow control device shall be set to achieve the desired outfall discharge rate for the catchment area served. To avoid blockage of the flow control device, the advisable minimum discharge rate is 5l/s.

The proposed permanent attenuation volume, shown in **Table 4.6**, would be provided onsite within the network of pipes (to be done by others) and outside the converter station and substation compounds via two detention basins. The required attenuation volumes for the two proposed detention basins are 4200 and 2000 m³ to protect the site against the 1 in 200 year + cc event and critical equipment from the 1 in 1000 year + cc even whilst limiting discharge to greenfield runoff. The basins may reduce in size once the drainage design is complete and consideration is given to the attenuation volume provided by the onsite drainage system (swales, filter drains etc).

The permanent detention basins will be vegetated, non-permeable geo-textile lined with an inlet forebay. This will provide treatment of the runoff by allowing for settlement of silts, heavy metals and the removal of oxygen demanding material.

Catchment Area Reference	Proposed Discharge Rate (1 in 2-year Greenfield Runoff Rate) (I/s)	Proposed Attenuation Volume (m ³)
AC Substation	96.4	4200
HVDC Converter Station	115.6	2000

4.5 Exceedance Events

The proposed development will locally increase ground levels around the site boundary due to the requirement of constructing flat platforms for the converter station and substation. Any exceedance flow that could occur when rainfall exceeds the 1 in 200-year + 48% climate change allowance will be delivered to the proposed detention basins and permeable platforms. During time where the system may flood due to very large storm events, all excess water that cannot be contained within the permeable platform or SUDs features (basins) should be

maintained within suitable exceedance areas and routes. These routes should direct flow towards the two watercourses.

4.6 Hydraulic Modelling: Convertor Detention Basin (AT-01)

The following parameters in Table 4.7 have been used in the hydraulic design and simulation using MicroDrainage modelling software.

Table 4.7: Hydraulic Modelling Parameters

Criteria	Parameter
Rainfall	
Rainfall Method	FEH /Modified Rational Method
Design Rainfall	FEH 2022- Point Rainfall
	GB 140358 931952 NB 40358 31952
Simulation Criteria	
Cv (Summer)	0.750
Cv (Winter)	1.000
Time of Concentration	5mins
Return Periods	
	1:2
Permanent Catchment	1:200 +48%
	1:1000 +48%
Percentage of Impervious (PIMP)	
Converter Station	57%
Substation	47%
Permanent Road-West	100%
Permanent Road-East	100%
Cut/Fill Slopes	21%
Laydown Area 2	50%
Laydown Area 3	50%
Catchment Areas	
Converter Station	8.59ha
Substation	6.36ha
Permanent Road-West	0.31ha
Permanent Road-East	0.39ha
Cut/Fill Slopes	3.56ha
Laydown Area 2	4ha
Laydown Area 3	2ha
Net Area	25.21ha
Detention Basin Structure – AT01	
Volume (m3)	4625.3
Flow Control Device	Hydro-Brake
Design Flow (I/s)	105.00
Discharge Point	Outfall into North Watercourse

Criteria	Parameter
Detention Basin Structure – AT02	
Volume (m3)	2472.2
Flow Control Device	Hydro-Brake
Design Flow (I/s)	96.43
Discharge Point	Outfall into South Watercourse

5 Water Quality Control

The proposed development provides a risk of water pollutants both during the temporary (construction) and permanent (operational) stages. SuDS features can be used to provide treatment to surface water runoff to prevent pollution of the receiving watercourses.

5.1 Developed Site Water Pollution Hazards

The following areas provide a risk of water pollution during the operational stage of the proposed development:

- External access road leading to the substation and converter station sites.
- Embankments of the converter station and substation platforms.
- Permanent drainage systems on the substation and converter station site.

The water quality control measures implemented within the internal substation and converter station drainage systems are as follows for the standardised HVDC platform design and AC Substation. Filter drains will be provided wherever feasible for surface water runoff but water quality will be mitigated 'off platform' in the attenuation basin described in this document. Oily water will be treated through above ground filters fed by oil discerning sump pumps and will also be directed to the attenuation basin. This satisfies the requirements for water quality as identified using the Simple Index method described in the SUDS manual (see appendix C).

The permanent or operational drainage system is designed to meet the water quality criteria and best practice pollution control measures set out in the CIRIA SuDS Manual. The site is categorized by appropriate pollution hazard level from Table 26.15 and Table 26.2 of the SuDS Manual. As an initial check, the Simple Index Approach, seen in Appendix C, has been applied to confirm the pollution risks are mitigated sufficiently as recommended in Section 26.7.1 'Water Quality Management: Design Methods' of the SuDS Manual.

5.1.1 Operational Phase Substation and Converter Station Site

The proposed surface water drainage system will improve the water quality of surface water runoff from the proposed development, which will ultimately outfall to existing watercourses.

This will be done by using a treatment chain where each subsequent system within the proposed drainage network provides treatment to improve water quality.

The proposed surface water treatment method will depend on the potential hazards on the site and the sensitivity of the receiving water body to pollution.

In line with the SP-NET-CIV-509 and the 502, all transformers will have a totally sealed bund with a sump which has a water control unit to pump any water out. This will be directed through an above ground oil separator to pick up any potential small levels of residual oil before being discharged into the main operational platform drainage system.

Access roads will drain into a filter drain system or the permeable platform; this will provide an adequate level of water quality treatment.

A penstock valve shall be installed at each outfall, with sampling points incorporated downstream of the swale or basin prior to discharge entering the water environment. Each new outfall to existing watercourses will require a discharge consent, to be agreed with SEPA and the Local Flood Authority, Western Isles Council.

5.1.2 External Access Road

The external access road leading to the proposed converter station and substation sites will be occasionally used by staff and visitors and has therefore been considered as a very low trafficked area. Subsequently, it has been assumed that there will be no significant discharge of potential pollutants from this area.

Filter drains have been proposed either side of the permanent access road to intercept overland flows and prevent surface water runoff from the road directly entering the surrounding watercourses without treatment. The surface water runoff from the external access road shall pass through the filter drains, into swales and outfall to the north and south watercourses respectively, providing an appropriate level of treatment. As indicated in Table 26.15 from the SuDS Manual, filter drains are particularly effective at removing the main pollutants in runoff such as suspended solids, hydrocarbons and metals.

5.1.3 Embankments of the Converter Station & Substation Platforms

The embankments of the permanent site platforms provide a risk of pollution via the potential transportation of silt/fines as a result of rainfall landing directly on them. This risk shall be mitigated through:

- Filter drains at the toe of cutting slopes within the converter station and AC substation and;
- Swales at the toe of filling slopes outside of the converter station and AC substation fencing.

As stated in Section 5.1.2, filter drains are effective at removing suspended solids. Furthermore, check dams shall be installed within the swales to slow the water velocity within the swale, reducing erosion and encouraging silts/fines to settle. The check dams also provide a barrier, preventing the soil particles travelling through the permanent drainage network and entering the receiving watercourses.

5.1.4 Discharging Water into a River

To avoid existing waterbodies becoming contaminated by suspended sediments, the velocity of flows at the outfall should be reduced using baffles, blocks in the outfall apron or an energydissipater. The same consideration should be taken when over-pumping water along a watercourse.

Penstock valves will be installed to close or isolate the outfall in the event of a pollution incident.

5.2 Construction Phase Water Pollutant Hazards

During the construction stage, risks of water pollutants are present during:

- 1. The construction of the permanent substation and converter station platforms and;
- 2. The operations of the temporary construction compounds.

The following risks are provided during the above activities:

- Surface water runoff transporting silts and other fine particles to the surrounding watercourses.
- The potential spillage of fuel when refuelling plant, creating areas of contaminated land and watercourse pollution.
- Waste materials could contaminate the surrounding ground and watercourses, causing significant harm to the natural environment.

The objectives of the surface water management plan when considering the construction of the permanent substation and convertor station are to maintain the current water environment, ensure SEPA are satisfied water quality standards are met, maintenance of all mitigation measures, water flowing out of the site is not contaminated with oil.

To ensure pollution is minimised during construction best practice guidance and the General Binding Rules (GBRs) will be followed. A construction site license will be applied for prior to construction commencing outlining all pollution prevention measures. Such measures include attenuation, swales, check dams and silt management techniques ie silt fences, further detailed below.

To prevent contamination of the water network from mud on vehicles and areas under construction, temporary basins will be constructed which will fully be made permanent at a later stage in the construction process. This will be detailed in the Surface and Foul Water Management Plan and is shown on Drawings 109647-MMD-ARNI-XX-DR-CE-0003 to -0004.

For construction phasing activities and temporary silt mitigation measures, refer to the Construction Environmental Management Plan.

5.2.1 Transportation of Silts and Fines

The potential pollution of the surrounding watercourse caused by silts and other fine particles during the construction phase shall be mitigated through the use of:

- Perimeter swales with check dams installed;
- Settlement lagoons with an appropriately sized settlement bay to remove the silts/fines generated during construction and;
- Widened swales with forebays to remove silts/fines located to the south of the temporary construction compounds.

Surface water runoff from the temporary and permanent platforms will enter the perimeter swales and undergo a basic level of treatment via removal of any silts/fines. Where ground elevations permit, the settlement lagoons will act as an intermediate element between the perimeter swales and the proposed discharge points, therefore providing an additional level of treatment to surface water runoff.

The settlement lagoons are to be extended and compartmentalised on site by the Contractor as necessary to meet water quality control standards through settlement and, if required, dosing.

5.2.2 Spillage of Hazardous Substances

The prevention of fuel spillages shall be managed on site by the Contractor. It is advised that refuelling or handling of other hazardous substances shall take place within a water-tight bunded area located as far as practicably possible from the nearest watercourse. Spill kits shall be present on site and it is assumed that correct spill procedures shall be in place and managed by the competent Contractor on site.

5.2.3 Waste Materials

Waste materials shall be segregated and effectively managed on site. All waste material storage areas shall be located as far as practicably possible from the nearest watercourse.

5.3 Water Quality Design Criteria

The drainage systems on site will be designed to meet the water quality design criteria and good practice pollution control measures as outlined in the CIRIA SuDS manual. The different areas of the site will be categorised by the appropriate pollution hazard level from Table 26.2 of The SuDS Manual. As an initial check, the Simple Index Approach has been applied to confirm the pollution risks are mitigated sufficiently as recommended in Section 26.7.1 "Water quality management: design methods" of The SuDS Manual.

For the operational phase, the SuDS components stated above are proposed to provide sufficient pollution mitigation – refer to Appendix C.

6 Conclusions

This outline drainage strategy has concluded as follows, subject to further development and consultation with key stakeholders:

- A permanent foul water network is required to accommodate the proposed welfare facilities at both the substation and converter station sites, connecting to the existing Scottish Water network along the A859. The preferred solution for the permanent foul water network, foresees connecting into an existing combined sewer, owned and maintained by Scottish Water, through a series of pumped and gravity connections. The proposed connection point is into an existing manhole 1201 located to the west of the A859. If this solution is unfeasible due to technical issues, other options are provided in Section 3.1.1
- Effluent from temporary site accommodation will be collected within a septic holding tank and removed from site as controlled waste. The foul effluent shall be removed from site by licensed waste disposal companies and the effluent shall be taken to a fully recognised and licensed sewage treatment works.
- Tributaries of the River Creed are the most suitable receptor for surface water discharge from the proposed Arnish Moor substation and converter station sites.
- In the permanent stage, surface water runoff from the impermeable surfaces such as rooftops of the substation and converter station sites are to be conveyed to permanent open channels/swales that then widen into detention basins with settlement lagoons prior to discharging into the nearest available watercourse at the equivalent 1 in 2-year greenfield runoff rate. Sampling points shall be incorporated downstream of the swale or basin prior to discharge entering the water environment.
- Adjacent higher ground flows will be collected in the permanent open channels/swales. The collected flows will be discharged into the nearest available watercourse with no restriction to flow.
- In the construction stage, temporary swales that will be later backfilled and settlement lagoons are to be utilised to attenuate surface water runoff and remove silts/fines prior to discharging into the nearest available watercourse at the equivalent 1 in 2-year greenfield runoff rate.
- Access roads shall be drained via kerbs and gullies or CKD units where appropriate, out falling into the permanent swales then nearest available watercourse at the equivalent 1 in 2-year greenfield runoff rate. Sampling points shall be incorporated downstream of the roads prior to discharge into the river.
- The proposed drainage system has been designed to accommodate a 1 in 200-year return period and 48% climate change without surface flooding. A preliminary check of the 1 in 1000 (plus climate change event) year event has also been undertaken and critical equipment is suitably protected. The estimated required attenuation volumes for the two proposed detention basins are 4200m3 and 2000m3 approximately, whilst limiting discharge to greenfield runoff. It is envisaged that forming these basins will require significant removal of peat therefore further modelling will be undertaken as the design develops to refine these volumes with the aim of minimising the environmental impact.
- Discharge consents affecting the existing watercourses shall be agreed with SEPA and the Local Flood Authority, Western Isles Council.

Appendices

- Appendix A Greenfield Runoff Calculations
- Appendix B Attenuation Volume Calculations
- Appendix C Water Quality Simple Index Approach

A. Greenfield Runoff Calculations

Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

2638500466

Aug 30 2024 11:52

Calculated by:	Euan Walker	Site Deta	ails
Site name:	Arnish Moor Substation	Latitude:	58.20018° N
Site location:	Arnish Moor	Longitude:	6.42078° W

This is an estimation of the greenfield runoff rates that are used to meet normal best practice **Reference:** criteria in line with Environment Agency guidance "Rainfall runoff management for developments", SC030219 (2013), the SuDS Manual C753 (Ciria, 2015) and the non-statutory standards for SuDS (Defra, 2015). This information on greenfield runoff rates may be the basis **Date:**

for setting consents for the drainage of surface water runoff from sites.

Runoff estimation	approach	IH124	
Site characteristi	cs		Notes
Total site area (ha): ^{8.34}			(1) Is Q _{BAR} < 2.0 l/s/ha?
Methodology			
Q _{BAR} estimation method:	Calculate from S	SPR and SAAR	When Q _{BAR} is < 2.0 l/s/ha then limiting discharge rates are set at 2.0 l/s/ha.
SPR estimation method:	Calculate from S	SOIL type	
Soil characteristic	CS _{Default}	Edited	(2) Are flow rates < 5.0 l/s?
SOIL type:	5	5	Where flow rates are less than 5.0 l/s consent
HOST class:	N/A	N/A	for discharge is usually set at 5.0 l/s if blockage
SPR/SPRHOST:	0.53	0.53	from vegetation and other materials is possible. Lower consent flow rates may be set where the
Hydrological characteristics	Default	Edited	blockage risk is addressed by using appropriate drainage elements.
SAAR (mm):	1293	1293	
Hydrological region:	1	1	(3) Is SPR/SPRHOST ≤ 0.3?
Growth curve factor 1 year	0.85	0.85	Where groundwater levels are low enough the
Growth curve factor 30 years:	1.95	1.95	use of soakaways to avoid discharge offsite would normally be preferred for disposal of
Growth curve factor 100 years:	2.48	2.48	surface water runoff.
Growth curve factor 200 years:	2.84	2.84	

Q _{BAFI} (I/s):	107.14	107.14
1 in 1 year (l/s):	91.07	91.07
1 in 30 years (l/s):	208.92	208.92
1 in 100 year (I/s):	265.71	265.71
1 in 200 years (l/s):	304.28	304.28

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement , which can both be found at www.uksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

Greenfield runoff rate estimation for sites

tool

-	•			www.uksuc	ls.com Greenfield runoff
Calculated by:	Euan W	alker		Site Detail	S
Site name:	Arnish Statior	Moor Convertor		Latitude:	58.19997° N
Site location:	Arnish	Moor		Longitude:	6.41945° W
developments", SC0 standards for SuDS (10110000000 30219 (2013 (Defra, 2015) , the SuDS Manual C	aintali runott man 753 (Ciria, 2015) ai 1 greenfield runof	nd the non-statutory ff rates may be the basis	4124721741 Aug 30 2024 11:46
Runoff esti	matio	n approach	IH124		
Site charac	terist	ics		Notes	
Total site area (h	a) : ¹⁰			(1) Is Q _{BAB} < 2.0 l/s/ha?	
Methodolog	gy				
Q _{EAR} estimation r	nethad:	Calculate from S	SPR and SAAR	When Q _{BAR} is < 2.0 l/s/ha then l rates are set at 2.0 l/s/ha.	imiting discharge
SPR estimation m	rethcd:	Calculate from S	SOIL type		
Soil charac	teristi	CS Default	Edited	(2) Are flow rates < 5.0 l	/s?
SOIL type:		5	5		
HCST class:		N/A	N/A	Where flow rates are less than for discharge is usually set at	
SPR/SPRHOST:		0.53	0.53	from vegetation and other ma Lower consent flow rates may	
Hydrologica characteris		Default	Edited	blockage risk is addressed by drainage elements.	
SAAR (mm):		1293	1293		
Hydrological regi	an:	1	1	(3) Is SPR/SPRHOST ≤ 0.3	?
Growth curve fac	tor 1 yea	0.85	0.85	Where groundwater levels are	low enough the
Growth curve fac years:	tor 30	1.95	1.95	use of soakaways to avoid disc would normally be preferred fo	•
Growth curve fac years:	tor 100	2.48	2.48	surface water runoff.	
Growth curve fac years:	tar 200	2.84	2.84]	

Greenfield runoff rates

Default

Q _E	_{BAE} (I/s):	128.47	128.47
1 i	n 1 year (l/s):	109.2	109.2
1 i	n 30 years (l/s):	250.51	250.51
1 i	n 100 year (l/s):	318.59	318.59
1 ii	n 200 years (l/s):	364.84	364.84

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement , which can both be found at www.uksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

1720343202

Aug 30 2024 12:00

Calculated by:	Euan Walker	Site Deta	ails
Site name:	Arnish Moor Substation	Latitude:	58.19921° N
Site location:	Arnish Moor	Longitude:	6.42254° W

This is an estimation of the greenfield runoff rates that are used to meet normal best practice **Reference:** criteria in line with Environment Agency guidance "Rainfall runoff management for developments", SC030219 (2013), the SuDS Manual C753 (Ciria, 2015) and the non-statutory standards for SuDS (Defra, 2015). This information on greenfield runoff rates may be the basis **Date:**

for setting consents for the drainage of surface water runoff from sites.

Runoff estimation	n approach	IH124	
Site characterist	ics		Notes
Total site area (ha): 4.41			(1) $\ln \Omega_{-1-} < 2.0 \frac{1}{n} / \frac{1}{n}$
Methodology			(1) Is Q _{BAR} < 2.0 I/s/ha?
Q _{BAR} estimation method:	Calculate from S	SPR and SAAR	When Q _{BAR} is < 2.0 l/s/ha then limiting discharge rates are set at 2.0 l/s/ha.
SPR estimation method:	Calculate from S	SOIL type	
Soil characteristi	CS Default	Edited	(2) Are flow rates < 5.0 l/s?
SOIL type:	5	5	
HOST class:	N/A	N/A	Where flow rates are less than 5.0 l/s consent for discharge is usually set at 5.0 l/s if blockage
SPR/SPRHOST:	0.53	0.53	from vegetation and other materials is possible. Lower consent flow rates may be set where the
Hydrological characteristics	Default	Edited	blockage risk is addressed by using appropriate drainage elements.
SAAR (mm):	1293	1293	
Hydrological region:	1	1	(3) Is SPR/SPRHOST ≤ 0.3?
Growth curve factor 1 yea	n 0.85	0.85	Where groundwater levels are low enough the
Growth curve factor 30 years:	1.95	1.95	use of soakaways to avoid discharge offsite would normally be preferred for disposal of
Growth curve factor 100 years:	2.48	2.48	surface water runoff.
Growth curve factor 200 years:	2.84	2.84	

Q _{BAR} (I/s):	56.65	56.65
1 in 1 year (l/s):	48.16	48.16
1 in 30 years (l/s):	110.47	110.47
1 in 100 year (l/s):	140.5	140.5
1 in 200 years (l/s):	160.9	160.9

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement , which can both be found at www.uksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

4279862259

Aug 30 2024 12:03

Calculated by:	Euan Walker	Site Deta	ails
Site name:	Arnish Moor Substation	Latitude:	58.19921° N
Site location:	Arnish Moor	Longitude:	6.42254° W

This is an estimation of the greenfield runoff rates that are used to meet normal best practice **Reference:** criteria in line with Environment Agency guidance "Rainfall runoff management for developments", SC030219 (2013), the SuDS Manual C753 (Ciria, 2015) and the non-statutory standards for SuDS (Defra, 2015). This information on greenfield runoff rates may be the basis

Date: for setting consents for the drainage of surface water runoff from sites.

Runoff estimation	n approach	IH124	
Site characteristi	ics		Notes
Total site area (ha): 1.78			(1) Is Q _{BAR} < 2.0 I/s/ha?
Methodology			(1) 13 QBAR < 2.01/3/114
Q _{BAR} estimation method:	Calculate from S	SPR and SAAR	When Q _{BAR} is < 2.0 l/s/ha then limiting discharge rates are set at 2.0 l/s/ha.
SPR estimation method:	Calculate from S	SOIL type	
Soil characteristi	CS _{Default}	Edited	(2) Are flow rates < 5.0 l/s?
SCIL type:	5	5	Where flow rates are less than 5.0 l/s consent
HOST class:	N/A	N/A	for discharge is usually set at 5.0 l/s if blockage
SPR/SPRHOST:	0.53	0.53	from vegetation and other materials is possible. Lower consent flow rates may be set where the
Hydrological characteristics	Default	Edited	blockage risk is addressed by using appropriate drainage elements.
SAAR (mm):	1293	1293	
Hydrological region:	1	1	(3) Is SPR/SPRHOST ≤ 0.3?
Growth curve factor 1 year	0.85	0.85	Where groundwater levels are low enough the
Growth curve factor 30 years:	1.95	1.95	use of soakaways to avoid discharge offsite would normally be preferred for disposal of
Growth curve factor 100 years:	2.48	2.48	surface water runoff.
Growth curve factor 200 years:	2.84	2.84	

Q _{EAR} (I/s):		22.87	22.87
1 in 1 year	(l/s):	19.44	19.44
1 in 30 yea	ars (I/s):	44.59	44.59
1 in 100 ye	ar (l/s):	56.71	56.71
1 in 200 ye	ears (l/s):	64.94	64.94

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement , which can both be found at www.uksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

B. Attenuation Volume Calculations

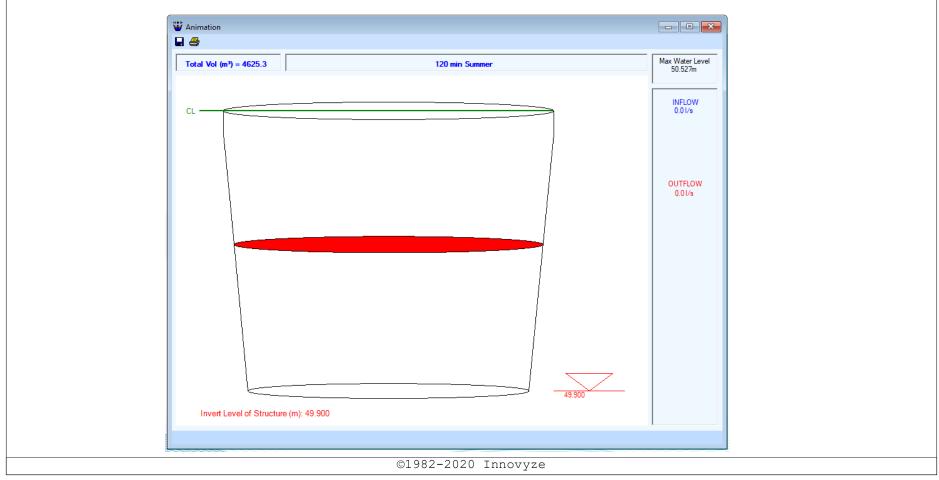
	Ltd							Page 1
Unit No. 101, 1st B	loor	, Nom.						
Hiranandani Garden,								
Maharashtrs, 400076		ndia	••					
		IIUIA	Der		1 NT T	1015	2.0	MICrO
Date 9/12/2024 10:5				-	by NAI	.1015	38	Drainac
File AT01 Pond.SRCX				ecked 1	-			
Innovyze			Soi	arce Co	ontrol	2020	.1.3	
Summary	of 1	Results	s for i	<u>200 ye</u>	<u>ar Reti</u>	ırn P	eriod (+48	
	Sto		Max	Max	Max	Max		
	Eve	nt	Level (m)	Deptn (m)	Control (1/s)			
			(111)	(111)	(1/3)	(111)		
-	5 min	Summer	50.186	0.286	72.0	1404	.2 ОК	
		Summer						
		Summer						
		Summer			104.9 104.9			
		Summer Summer			104.9			
		Summer						
		Summer						
		Summer				3199	.4 ОК	
		Summer						
		Summer			104.9			
		Summer			104.9			
		Summer Summer			104.2			
		Summer						
		Summer						
	.5 min	Winter	50.278	0.378	101.4	1866	.3 ОК	
	0 min	Winter	50.446	0.546	104.9	2732	.8 ОК	
		Winter				3848	.8 ОК	
		Winter						
Ξ¢	0 mitri	Winter	50.780	0.000	109.9	4313	.0 ОК	
	Sto		Rain			-	Time-Peak	
	Sto: Eve) Volum	ne Vol	ume	Time-Peak (mins)	
					ne Vol	ume		
1	Eve		(mm/hr)) Volum (m³)	ne Vol (m	ume		
3	Eve: 5 min 0 min	Summer Summer	(mm/hr)) Volum (m ³) 1 0 6 0	ne Vol (m .0 12 .0 19	ume ³) 240.9 920.1	(mins) 25 39	
3	Eve: 5 min 0 min 0 min	Summer Summer Summer	(mm/hr) 138.293 102.38 73.21) Volum (m ³) 1 0 6 0 6 0	ne Vol (m .0 12 .0 19 .0 29	ume 3) 240.9 920.1 954.3	(mins) 25 39 68	
3 6 12	Eve 5 min 0 min 0 min 0 min	Summer Summer Summer Summer	(mm/hr) 138.293 102.38 73.21 42.97) Volum (m ³) 1 0 6 0 9 0	No Vol .0 12 .0 19 .0 29 .0 34	ume ³) 240.9 920.1 954.3 184.5	(mins) 25 39 68 124	
3 6 12 18	Eve 5 min 0 min 0 min 0 min 0 min	Summer Summer Summer Summer Summer	(mm/hr) 138.29 102.38 73.21 42.97 31.23	Volum (m³) 1 0 6 0 9 0 3 0	wol .0 12 .0 19 .0 29 .0 34 .0 38	ume 3) 240.9 920.1 954.3 184.5 805.8	(mins) 25 39 68 124 182	
3 6 12 18 24	Eve: 5 min 0 min 0 min 0 min 0 min 0 min	Summer Summer Summer Summer	(mm/hr) 138.293 102.38 73.21 42.97	Volum (m³) 1 0 6 0 6 0 9 0 3 0 3 0	No. Vol. .0 12 .0 19 .0 29 .0 34 .0 38 .0 40	ume ³) 240.9 920.1 954.3 184.5	(mins) 25 39 68 124	
3 6 12 18 24 36	Eve 5 min 0 min 0 min 0 min 0 min 0 min 0 min	Summer Summer Summer Summer Summer Summer	(mm/hr) 138.29 102.38 73.21 42.97 31.23 24.85	Volum (m ³) 1 0 6 0 6 0 9 0 3 0 3 0 2 0	ne Vol .0 12 .0 15 .0 29 .0 34 .0 36 .0 40 .0 43	ume 3) 240.9 220.1 054.3 184.5 805.8 042.5	(mins) 25 39 68 124 182 228	
3 6 12 18 24 36 48	Eve: 5 min 0 min 0 min 0 min 0 min 0 min 0 min 0 min	Summer Summer Summer Summer Summer Summer Summer	(mm/hr) 138.299 102.389 73.21 42.979 31.233 24.855 17.992	Volum (m³) 1 0 6 0 9 0 3 0 2 0 8 0	Ne Vol .0 12 .0 15 .0 29 .0 34 .0 36 .0 40 .0 43 .0 46	ume 3) 240.9 220.1 254.3 184.5 805.8 042.5 395.3	(mins) 25 39 68 124 182 228 286	
3 6 12 18 24 36 48 60 72	Eve: 5 min 0 min 0 min 0 min 0 min 0 min 0 min 0 min 0 min 0 min	Summer Summer Summer Summer Summer Summer Summer Summer	(mm/hr) 138.299 102.388 73.21 42.97 31.23 24.85 17.999 14.27 11.92 10.300	Volum (m³) 1 0 6 0 9 0 3 0 2 0 8 0 9 0 0 0	vol .0 12 .0 12 .0 12 .0 29 .0 34 .0 36 .0 40 .0 46 .0 48 .0 50	240.9 920.1 954.3 184.5 805.8 942.5 895.3 553.6 860.9 936.6	(mins) 25 39 68 124 182 228 286 348 414 482	
3 6 12 18 24 36 48 60 72 96	Eve 5 min 0 min	Summer Summer Summer Summer Summer Summer Summer Summer Summer	(mm/hr) 138.29 102.38 73.21 42.97 31.23 24.85 17.99 14.27 11.92 10.300 8.17	Volum (m³) 1 0 6 0 9 0 3 0 2 0 8 0 9 0 2 0 8 0 9 0 2 0 4 0	vol .0 12 .0 19 .0 29 .0 34 .0 34 .0 40 .0 42 .0 42 .0 42 .0 42 .0 42 .0 42 .0 50 .0 53	240.9 920.1 954.3 184.5 805.8 942.5 895.3 553.6 860.9 936.6 827.7	(mins) 25 39 68 124 182 228 286 348 414 482 616	
3 6 12 18 24 36 48 60 72 96 144	Eve 5 min 0 min	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	(mm/hr) 138.29 102.38 73.21 42.97 31.23 24.85 17.99 14.27 11.92 10.300 8.17 5.91	Volum (m³) 1 0 6 0 9 0 3 0 2 0 8 0 9 0 10 0 11 0 12 0 13 0 14 0	vol .0 12 .0 19 .0 29 .0 34 .0 34 .0 40 .0 42 .0 46 .0 46 .0 50 .0 53 .0 57	240.9 220.1 254.3 184.5 305.8 042.5 395.3 553.6 360.9 036.6 327.7 765.7	(mins) 25 39 68 124 182 228 286 348 414 482 616 876	
3 6 12 18 24 36 48 60 72 96 144 216	Eve 5 min 0 min	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	(mm/hr) 138.29 102.38 73.21 42.97 31.23 24.85 17.99 14.27 11.92 10.300 8.17 5.91 4.30	Volum (m³) 1 0 6 0 9 0 3 0 2 0 8 0 9 0 0 0 4 0 3 0	vol .0 12 .0 19 .0 29 .0 34 .0 34 .0 40 .0 42 .0 46 .0 46 .0 50 .0 57 .0 64	240.9 220.1 254.3 1854.3 1855.8 042.5 395.3 553.6 360.9 036.6 327.7 765.7 133.8	(mins) 25 39 68 124 182 228 286 348 414 482 616 876 1252	
3 6 12 18 24 36 48 60 72 96 144 216 288	Eve 5 min 0 min	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	(mm/hr) 138.29 102.38 73.21 42.97 31.23 24.85 17.99 14.27 11.92 10.300 8.17 5.91 4.30 3.46	Volum (m³) 1 0 6 0 9 0 3 0 2 0 8 0 9 0 0 0 4 0 3 0 5 0	vol .0 12 .0 19 .0 29 .0 34 .0 34 .0 34 .0 40 .0 46 .0 46 .0 50 .0 57 .0 64 .0 68	240.9 220.1 254.3 1854.3 1855.8 042.5 305.7 143.8 888.9 4	(mins) 25 39 68 124 182 228 286 348 414 482 616 876 1252 1596	
3 6 12 18 24 36 48 60 72 96 144 216 288 432	Eve 5 min 0 min	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	(mm/hr) 138.29 102.38 73.21 42.97 31.23 24.85 17.99 14.27 11.92 10.300 8.17 5.91 4.30	Volum (m³) 1 0 6 0 9 0 3 0 2 0 3 0 2 0 3 0 2 0 3 0 2 0 4 0 5 0 2 0	vol .0 12 .0 19 .0 29 .0 34 .0 34 .0 34 .0 40 .0 46 .0 46 .0 50 .0 57 .0 64 .0 68 .0 76	240.9 220.1 254.3 1854.3 1855.8 042.5 395.3 553.6 360.9 036.6 327.7 765.7 133.8	(mins) 25 39 68 124 182 228 286 348 414 482 616 876 1252	
3 6 12 18 24 36 48 60 72 96 144 216 288 432 576	Eve 5 min 0 min	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	(mm/hr) 138.293 102.38 73.21 42.97 31.23 24.85 17.993 14.273 10.300 8.17 5.91 4.303 3.46 2.58 2.12	Volum (m³) 1 0 6 0 9 0 3 0 2 0 3 0 2 0 3 0 2 0 3 0 2 0 3 0 2 0 3 0 2 0 3 0 2 0 3 0	vol .0 12 .0 19 .0 29 .0 34 .0 34 .0 34 .0 34 .0 40 .0 46 .0 46 .0 50 .0 57 .0 64 .0 76 .0 76 .0 85	240.9 220.1 254.3 1854.3 1855.8 042.5 305.7 133.8 389.4 550.7 7	(mins) 25 39 68 124 182 228 286 348 414 482 616 876 1252 1596 2296	
3 6 12 18 24 36 48 60 72 96 144 216 288 432 576 1 3	Eve 5 min 0 min	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	(mm/hr) 138.29 102.38 73.21 42.97 31.23 24.85 17.99 14.27 10.30 8.17 5.91 4.30 3.46 2.58 2.12 138.29 102.38	Volum (m³) 1 0 6 0 9 0 3 0 2 0 8 0 9 0 10 0 11 0 12 0 13 0 14 0 15 0 16 0 16 0	vol .0 12 .0 12 .0 12 .0 29 .0 34 .0 34 .0 34 .0 40 .0 46 .0 46 .0 50 .0 57 .0 64 .0 76 .0 85 .0 17 .0 26	240.9 220.1 254.3 184.5 305.8 342.5 395.3 553.6 360.9 366.9 366.9 366.9 367.7 765.7 133.8 389.4 550.7 510.9 712.5 517.6	(mins) 25 39 68 124 182 228 286 348 414 482 616 876 1252 1596 2296 3008 25 39	
3 6 12 18 24 36 48 60 72 96 144 216 288 432 576 1 3 6	Eve 5 min 0 min	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Winter Winter	(mm/hr) 138.29 102.38 73.21 42.97 31.23 24.85 17.99 14.27 10.30 8.17 5.91 4.30 3.46 2.58 2.12 138.29 102.38 73.21	Volum (m³) 1 0 6 0 9 0 3 0 2 0 8 0 9 0 0 0 4 0 5 0 2 0 3 0 2 0 3 0 5 0 6 0 6 0	vol .0 12 .0 12 .0 12 .0 29 .0 34 .0 34 .0 34 .0 34 .0 40 .0 46 .0 46 .0 50 .0 57 .0 64 .0 76 .0 85 .0 17 .0 26 .0 39	240.9 220.1 254.3 184.5 305.8 342.5 395.3 553.6 360.9 36.6 327.7 765.7 133.8 389.4 550.7 510.9 712.5 517.6 371.7	(mins) 25 39 68 124 182 228 286 348 414 482 616 876 1252 1596 2296 3008 25 39 68	
3 6 12 18 24 36 48 60 72 96 144 216 288 432 576 1 3 6 12	Eve 5 min 0	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	(mm/hr) 138.29 102.38 73.21 42.97 31.23 24.85 17.99 14.27 10.30 8.17 5.91 4.30 3.46 2.58 2.12 138.29 102.38 73.21	Volum (m³) 1 0 6 0 9 0 3 0 2 0 8 0 9 0 0 0 4 0 5 0 2 0 3 0 2 0 3 0 5 0 6 0 6 0 9 0	vol .0 12 .0 12 .0 12 .0 29 .0 34 .0 34 .0 34 .0 40 .0 46 .0 46 .0 57 .0 64 .0 76 .0 85 .0 17 .0 26 .0 32 .0 46	240.9 220.1 254.3 184.5 305.8 342.5 395.3 553.6 360.9 366.9 366.9 366.9 367.7 765.7 133.8 389.4 550.7 510.9 712.5 517.6	(mins) 25 39 68 124 182 228 286 348 414 482 616 876 1252 1596 2296 3008 25 39	

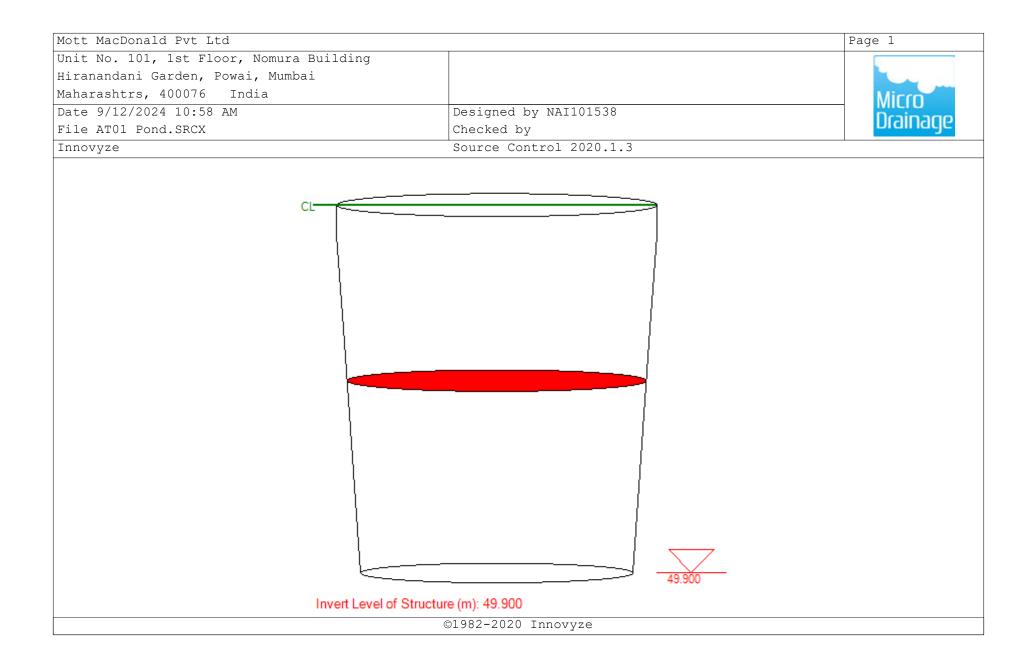
ults fo Ma Lev	Chec Sour 207 20 208 208 208 208 208 208 208 208 208 2	Ked b Cce Co. 00 yea Max Depth (m) 0.893 0.890 0.875 0.860	Max Control (1/s) 110.6 110.5 109.6	2020.1 <u>rn Per</u> <u>Max</u> Volume (m ³) 4584.3 4572.2	.3 <u>stiod (+48%</u> Status O K	
a I ults fo Ma Lev (m nter 50.7 nter 50.7 nter 50.7 nter 50.7 nter 50.7 nter 50.7 nter 50.7	Chec Sour 207 20 208 208 208 208 208 208 208 208 208 2	Ked b Cce Co. 00 yea Max Depth (m) 0.893 0.890 0.875 0.860	y ntrol Max Control (l/s) 110.6 110.5 109.6	2020.1 <u>rn Per</u> <u>Max</u> Volume (m ³) 4584.3 4572.2	.3 <u>stiod (+48%</u> Status O K	Draina
a I ults fo Ma Lev (m nter 50.7 nter 50.7 nter 50.7 nter 50.7 nter 50.7 nter 50.7 nter 50.7	Chec Sour 207 20 208 208 208 208 208 208 208 208 208 2	Ked b Cce Co. 00 yea Max Depth (m) 0.893 0.890 0.875 0.860	y ntrol Max Control (l/s) 110.6 110.5 109.6	2020.1 <u>rn Per</u> <u>Max</u> Volume (m ³) 4584.3 4572.2	.3 <u>stiod (+48%</u> Status O K	Draina
I ults fo Ma Lev nter 50.* nter 50.*	Chec Sour 207 20 208 208 208 208 208 208 208 208 208 2	Ked b Cce Co. 00 yea Max Depth (m) 0.893 0.890 0.875 0.860	y ntrol Max Control (l/s) 110.6 110.5 109.6	2020.1 <u>rn Per</u> <u>Max</u> Volume (m ³) 4584.3 4572.2	.3 <u>stiod (+48%</u> Status O K	Draina
ults fo Ma Lev (m nter 50.7 nter 50.7 nter 50.7 nter 50.7 nter 50.7 nter 50.7 nter 50.7	Chec Sour 207 20 208 208 208 208 208 208 208 208 208 2	Ked b Cce Co. 00 yea Max Depth (m) 0.893 0.890 0.875 0.860	y ntrol Max Control (l/s) 110.6 110.5 109.6	2020.1 <u>rn Per</u> <u>Max</u> Volume (m ³) 4584.3 4572.2	.3 <u>stiod (+48%</u> Status O K	
ults fo Ma Lev (m nter 50.7 nter 50.7 nter 50.7 nter 50.7 nter 50.7 nter 50.8	Sour or 20 ax vel I m) .793 (.790 (.790 (.775 (.760 (.741 (.697 (Max Depth ((m) 0.893 0.890 0.875 0.860	Max Control (1/s) 110.6 110.5 109.6	Max Volume (m ³) 4584.3 4572.2	status OK	
ults fo Ma Lev (m nter 50.° nter 50.° nter 50.° nter 50.° nter 50.° nter 50.°	or 20 ax vel I .793 (.790 (.775 (.760 (.741 (.697 (00 yea Max Depth ((m) 0.893 0.890 0.875 0.860	Max Control (1/s) 110.6 110.5 109.6	Max Volume (m ³) 4584.3 4572.2	status OK	<u>;)</u>
Ma Lev (m nter 50.7 nter 50.7 nter 50.7 nter 50.7 nter 50.4 nter 50.4	ax vel I m) .793 (.790 (.775 (.760 (.741 (.697 (Max Depth ((m) 0.893 0.890 0.875 0.860	Max Control (1/s) 110.6 110.5 109.6	Max Volume (m ³) 4584.3 4572.2	Status O K	<u>\$)</u>
Ma Lev (m nter 50.7 nter 50.7 nter 50.7 nter 50.7 nter 50.4 nter 50.4	ax vel I m) .793 (.790 (.775 (.760 (.741 (.697 (Max Depth ((m) 0.893 0.890 0.875 0.860	Max Control (1/s) 110.6 110.5 109.6	Max Volume (m ³) 4584.3 4572.2	Status O K	<u>s)</u>
Lev (m nter 50. nter 50. nter 50. nter 50. nter 50. nter 50. nter 50.	vel I m) .793 (.790 (.775 (.760 (.741 (.697 (Depth ((m) 0.893 0.890 0.875 0.860	Control (1/s) 110.6 110.5 109.6	Volume (m ³) 4584.3 4572.2	ОК	
Lev (m nter 50. nter 50. nter 50. nter 50. nter 50. nter 50. nter 50.	vel I m) .793 (.790 (.775 (.760 (.741 (.697 (Depth ((m) 0.893 0.890 0.875 0.860	Control (1/s) 110.6 110.5 109.6	Volume (m ³) 4584.3 4572.2	ОК	
(m nter 50.7 nter 50.7 nter 50.7 nter 50.7 nter 50.7 nter 50.7	m) .793 (.790 (.775 (.760 (.741 (.697 ((m) 0.893 0.890 0.875 0.860	(1/s) 110.6 110.5 109.6	(m ³) 4584.3 4572.2		
nter 50. nter 50. nter 50. nter 50. nter 50. nter 50. nter 50.	.793 (.790 (.775 (.760 (.741 (.697 (0.893 0.890 0.875 0.860	110.6 110.5 109.6	4584.3 4572.2		
nter 50.7 nter 50.7 nter 50.7 nter 50.7 nter 50.8 nter 50.8	.790 (.775 (.760 (.741 (.697 (0.890 0.875 0.860	110.5 109.6	4572.2		
nter 50.7 nter 50.7 nter 50.7 nter 50.7 nter 50.8 nter 50.8	.790 (.775 (.760 (.741 (.697 (0.890 0.875 0.860	110.5 109.6	4572.2		
nter 50. nter 50. nter 50. nter 50. nter 50. nter 50.	.775 (.760 (.741 (.697 (0.875 0.860	109.6			
nter 50.7 nter 50.7 nter 50.9 nter 50.9 nter 50.9	.760 (.741 (.697 (0.860		<i></i>	ОК	
nter 50.0 nter 50.9 nter 50.4	.697 (0.841	T 0 0 • 0	4406.0		
nter 50.5 nter 50.4				4302.0		
nter 50.4	596 (0.797	104.9	4063.9	ОК	
		0.696	104.9	3520.3	ΟK	
nter 50.3	.453 (0.553	104.9	2767.0	O K	
	.347 (0.447	103.9	2221.2	ОК	
nter 50.2			93.7			
nter 50.2	.206 (0.306	79.5	1503.0	ΟK	
				-		
		(m³)	(m³	·)		
nter 24.	.853	0.	0 54	22.4	236	
					342	
nter 14.	.278	Ο.	0 62	37.4	386	
nter 11.	.929	0.	0 65	13.9	462	
10	.300	0.			540	
		0	0 71	35.9	692	
nter 8.						
nter 8. nter 5.	.914	0.		27.3	980	
nter 8. nter 5. nter 4.	.914 .308	0. 0.	0 86	03.8	980 1364	
nter 8. nter 5. nter 4. nter 3.	.914 .308 .465	0. 0. 0.	0 86 0 92	03.8 16.4	980 1364 1704	
nter 8. nter 5. nter 4. nter 3. nter 2.	.914 .308	0. 0.	0 86 0 92 0 102	03.8	980 1364	
11 11	(mm ter 24 ter 17 ter 14 ter 11	ter 24.853 ter 17.992 ter 14.278 ter 11.929 ter 10.300	(mm/hr) Volume (m ³) ter 24.853 0. ter 17.992 0. ter 14.278 0. ter 11.929 0. ter 10.300 0.	(mm/hr) Volume (m³) Volu (m³) ter 24.853 0.0 54 ter 17.992 0.0 58 ter 14.278 0.0 62 ter 11.929 0.0 65 ter 10.300 0.0 67	(mm/hr) Volume (m³) Volume (m³) ter 24.853 0.0 5422.4 ter 17.992 0.0 5893.0 ter 14.278 0.0 6237.4 ter 11.929 0.0 6513.9 ter 10.300 0.0 6748.0	(mm/hr) Volume Volume (mins) (m ³) (m ³) ter 24.853 0.0 5422.4 236 ter 17.992 0.0 5893.0 342 ter 14.278 0.0 6237.4 386 ter 11.929 0.0 6513.9 462

©1982-2020 Innovyze

Mott MacDonald Pvt Ltd		Page 3
Unit No. 101, 1st Floor, Nom		
Hiranandani Garden, Powai, M		
Maharashtrs, 400076 India		Micro
Date 9/12/2024 10:56 AM	Designed by NAI101538	Drainage
File AT01 Pond.SRCX	Checked by	brainage
Innovyze	Source Control 2020.1.3	
Pa	infall Details	
<u>Na</u>	Infati Decatis	
Rainfall Mode	el FEH	
Return Period (years		
FEH Rainfall Versio	on 2013 on GB 140358 931952 NB 40358 31952	
Data Tyr		
Summer Storn		
Winter Storm Cv (Summer		
Cv (Winter	r) 1.000	
Shortest Storm (mins	,	
Longest Storm (mins Climate Change		
Tin	<u>ne Area Diagram</u>	
Tota	a^{1} a^{2} a^{2} b^{2} b^{2} b^{2} b^{2}	
1013	al Area (ha) 5.601	
Time (mins) Area Ti		
From: To: (ha) Fr	om: To: (ha) From: To: (ha)	
0 4 1.867	4 8 1.867 8 12 1.867	
©198	32-2020 Innovyze	

Mott MacDonald Pvt Ltd			Page	4
Unit No. 101, 1st Floor, Nom				
Hiranandani Garden, Powai, M				
Maharashtrs, 400076 India			Mirr	n
Date 9/12/2024 10:56 AM	Designed by N	JAI101538	Drain	hage
File AT01 Pond.SRCX	Checked by		Didi	iuge
Innovyze	Source Contro	01 2020.1.3		
	Model Details			
Storage is (Online Cover Level	(m) 51.100		
<u>Tank</u>	or Pond Struc	ture		
Inv	vert Level (m) 49.	900		
Depth (m) Area (m²) D	epth (m) Area (m²) Depth (m) A	rea (m²)	
0.000 4800.0	0.800 5407.	5 1.100	5644.7	
<u>Hydro-Brake</u>	e® Optimum Outf	<u>low Control</u>		
	it Reference MD-SH	IE-0407-1050-0		
	ign Head (m) n Flow (l/s)		0.800 105.0	
	Flush-Flo™	Ca	lculated	
	Objective Mini	mise upstream	storage Surface	
Sur	Application mp Available		Yes	
D	iameter (mm)		407	
Inver Minimum Outlet Pipe D:	rt Level (m)		49.900 450	
Suggested Manhole D:			2100	
Control H	Points Head	(m) Flow (1/s))	
Design Point (Calculated) 0.			
	Flush-Flo™ 0. Kick-Flo® 0.			
Mean Flow over		- 74.1		
			us uslationship f	
The hydrological calculations have Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised th invalidated	Should another t	ype of contro	l device other th	
Depth (m) Flow (l/s) Depth (m) Fl	ow (l/s) Depth (m) Flow (l/s)	Depth (m) Flow (l	L/s)
0.100 11.1 1.200	127.8 3.00)2.9
0.200 39.9 1.400 0.300 77.3 1.600	137.7 3.50 147.0 4.00			L3.4 23.5
0.400 102.4 1.800	155.7 4.50			29.5
0.500 104.8 2.000	163.9 5.00			39.3
0.600 104.4 2.200 0.800 104.9 2.400	171.7 5.50 179.2 6.00		9.500 34	18.8
1.000 116.9 2.600	186.3 6.50			
		I		
©1	982-2020 Innovy	ze		


IIni + No 10	ald Pvt Ltd						Page 1
MILL NO. IO	1, 1st Floor, No	om					9
Hiranandani	Garden, Powai,	М					
Maharashtrs	, 400076 India	ι					Micro
Date 9/12/2	024 11:04 AM	1	Design	ed by 1	AI1015	38	
File AT01 P	ond.SRCX		Checke	d by			Drainac
Innovyze				Contro	1 2020	.1.3	
	Summary of Resu	lts for	1000	vear R	eturn i	Period (+48%))
	<u> </u>			<u> </u>			<u></u>
	Storm	Max	Max	Max	Max	Status	
	Event	Level	Depth	Control	Volume		
		(m)	(m)	(l/s)	(m³)		
	15 min Summe	r = 50 - 27	7 0 377	101 4	1863.3	ОК	
	30 min Summe				2785.3	0 K	
	60 min Summe				3971.8	0 K	
	120 min Summe	r 50.74	4 0.844	107.7	4317.3	O K	
	180 min Summe	r 50.76	3 0.863	108.8	4422.6	O K	
	240 min Summe				4434.9	O K	
	360 min Summe				4364.1	0 K	
	480 min Summe				4288.2	O K	
	600 min Summe 720 min Summe				4209.1	ОК	
	960 min Summe				3944.9	0 K	
	1440 min Summe				3557.7		
	2160 min Summe				3027.0	0 K	
	2880 min Summe	r 50.42	3 0.523	104.9	2611.7	O K	
	4320 min Summe	r 50.31	7 0.417	103.0	2068.3	O K	
	5760 min Summe				1786.9	O K	
	15 min Winte				2494.0	0 K	
	30 min Winte 60 min Winte				3751.4	O K Flood Risk	
	120 min Winte						
	180 min Winte						
	Storm	Ra	in Flo	ooded Di	scharge	Time-Peak	
	Storm Event		in Fla 'hr) Vo		scharge Volume	Time-Peak (mins)	
			'hr) Vo		-		
	Event	(mm/	'hr) Vo (lume V	Volume (m³)		
		(mm/	'hr) Vo (230	lume N m³)	Volume	(mins)	
	Event 15 min Sum	(mm/ ner 184. ner 139.	'hr) Vo (230 179	lume X m ³) 0.0	7olume (m ³) 1710.8	(mins) 25	
	Event 15 min Sum 30 min Sum 60 min Sum 120 min Sum	(mm/ ner 184. ner 139. ner 100. ner 57.	'hr) Vo (230 179 655 217	lume X m ³) 0.0 0.0 0.0 0.0	Tolume (m ³) 1710.8 2671.9 4098.1 4670.7	(mins) 25 40 68 126	
	Event 15 min Sumu 30 min Sumu 60 min Sumu 120 min Sumu 180 min Sumu	(mm/ ner 184. ner 139. ner 100. ner 57. ner 40.	'hr) Vo (230 179 655 217 887	lume V m ³) 0.0 0.0 0.0 0.0 0.0	Tolume (m ³) 1710.8 2671.9 4098.1 4670.7 5012.0	(mins) 25 40 68 126 184	
	Event 15 min Sum 30 min Sum 60 min Sum 120 min Sum 180 min Sum 240 min Sum	(mm/ ner 184. ner 139. ner 100. ner 57. ner 40. ner 32.	<pre>'hr) Vo 230 179 655 217 887 183</pre>	lume X m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	701ume (m ³) 1710.8 2671.9 4098.1 4670.7 5012.0 5263.1	(mins) 25 40 68 126 184 242	
	Event 15 min Sum 30 min Sum 60 min Sum 120 min Sum 180 min Sum 240 min Sum 360 min Sum	(mm/ ner 184. ner 139. ner 100. ner 57. ner 40. ner 32. ner 22.	<pre>'hr) Vo 230 179 655 217 887 183 977</pre>	lume X m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	701ume (m ³) 1710.8 2671.9 4098.1 4670.7 5012.0 5263.1 5639.9	(mins) 25 40 68 126 184 242 312	
	Event 15 min Sum 30 min Sum 60 min Sum 120 min Sum 180 min Sum 240 min Sum	(mm/ ner 184. ner 139. ner 100. ner 57. ner 40. ner 32. ner 22. ner 18.	<pre>'hr) Vo 230 179 655 217 887 183 977 093</pre>	lume X m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	701ume (m ³) 1710.8 2671.9 4098.1 4670.7 5012.0 5263.1	(mins) 25 40 68 126 184 242	
	Event 15 min Sum 30 min Sum 60 min Sum 120 min Sum 180 min Sum 240 min Sum 360 min Sum	(mm/ ner 184. ner 139. ner 100. ner 57. ner 40. ner 32. ner 22. ner 18. ner 15.	<pre>'hr) Vo 230 179 655 217 887 183 977 093 037</pre>	lume X m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	701 ume (m ³) 1710.8 2671.9 4098.1 4670.7 5012.0 5263.1 5639.9 5922.5	(mins) 25 40 68 126 184 242 312 372	
	Event 15 min Sumu 30 min Sumu 60 min Sumu 120 min Sumu 180 min Sumu 360 min Sumu 360 min Sumu 600 min Sumu 720 min Sumu 960 min Sumu	(mm/ ner 184. ner 139. ner 100. ner 57. ner 40. ner 32. ner 22. ner 18. ner 15. ner 12. ner 10.	<pre>'hr) Vo 230 179 655 217 887 183 977 093 037 932</pre>	lume X m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	701 ume (m ³) 1710.8 2671.9 4098.1 4670.7 5012.0 5263.1 5639.9 5922.5 6152.3	(mins) 25 40 68 126 184 242 312 372 436	
	Event 15 min Sumu 30 min Sumu 60 min Sumu 120 min Sumu 120 min Sumu 240 min Sumu 360 min Sumu 480 min Sumu 720 min Sumu 960 min Sumu 1440 min Sumu	(mm/ ner 184. ner 139. ner 100. ner 57. ner 40. ner 32. ner 22. ner 18. ner 15. ner 12. ner 10. ner 7.	<pre>'hr) Vo 230 179 655 217 887 183 977 093 037 932 204 328</pre>	Lume X m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	701 ume (m ³) 1710.8 2671.9 4098.1 4670.7 5012.0 5263.1 5639.9 5922.5 6152.3 6347.7 6673.4 7171.8	(mins) 25 40 68 126 184 242 312 372 436 504 640 912	
	Event 15 min Sumu 30 min Sumu 60 min Sumu 120 min Sumu 120 min Sumu 240 min Sumu 360 min Sumu 480 min Sumu 720 min Sumu 960 min Sumu 1440 min Sumu 2160 min Sumu	(mm/ ner 184. ner 139. ner 100. ner 57. ner 40. ner 32. ner 22. ner 18. ner 15. ner 12. ner 10. ner 5.	<pre>'hr) Vo 230 179 655 217 887 183 977 093 037 932 204 328 306</pre>	Lume X m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	701 ume (m ³) 1710.8 2671.9 4098.1 4670.7 5012.0 5263.1 5639.9 5922.5 6152.3 6347.7 6673.4 7171.8 7940.4	(mins) 25 40 68 126 184 242 312 372 436 504 640 912 1296	
	Event 15 min Sumu 30 min Sumu 60 min Sumu 120 min Sumu 120 min Sumu 240 min Sumu 360 min Sumu 360 min Sumu 480 min Sumu 960 min Sumu 1440 min Sumu 2160 min Sumu 2880 min Sumu	(mm/ ner 184. ner 139. ner 100. ner 57. ner 40. ner 32. ner 22. ner 18. ner 15. ner 12. ner 10. ner 5. ner 4.	<pre>'hr) Vo 230 179 655 217 887 183 977 093 037 932 204 328 306 252</pre>	Lume X m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	701 ume (m ³) 1710.8 2671.9 4098.1 4670.7 5012.0 5263.1 5639.9 5922.5 6152.3 6347.7 6673.4 7171.8 7940.4 8474.7	(mins) 25 40 68 126 184 242 312 372 436 504 640 912 1296 1652	
	Event 15 min Sum 30 min Sum 30 min Sum 40 min Sum 120 min Sum 140 min Sum 960 min Sum 1440 min Sum 280 min Sum 320 min Sum	(mm/ ner 184. ner 139. ner 100. ner 57. ner 40. ner 32. ner 22. ner 18. ner 15. ner 12. ner 10. ner 5. ner 4. ner 3.	<pre>'hr) Vo 230 179 655 217 887 183 977 093 037 932 204 328 306 252 160</pre>	Lume X m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	701 ume (m ³) 1710.8 2671.9 4098.1 4670.7 5012.0 5263.1 5639.9 5922.5 6152.3 6347.7 6673.4 7171.8 7940.4 8474.7 9394.3	(mins) 25 40 68 126 184 242 312 372 436 504 640 912 1296 1652 2344	
	Event 15 min Sum 30 min Sum 30 min Sum 40 min Sum 120 min Sum 1440 min Sum 1260 min Sum 280 min Sum 2320 min Sum 5760 min Sum	(mm/ ner 184. ner 139. ner 100. ner 57. ner 40. ner 32. ner 22. ner 18. ner 15. ner 12. ner 10. ner 5. ner 4. ner 3. ner 3. ner 2.	<pre>'hr) Vo 230 179 655 217 887 183 977 093 037 932 204 328 306 252 160 596</pre>	Lume X m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	701 ume (m ³) 1710.8 2671.9 4098.1 4670.7 5012.0 5263.1 5639.9 5922.5 6152.3 6347.7 6673.4 7171.8 7940.4 8474.7 9394.3 10417.7	(mins) 25 40 68 126 184 242 312 372 436 504 640 912 1296 1652 2344 3048	
	Event 15 min Sum 30 min Sum 30 min Sum 40 min Sum 120 min Sum 140 min Sum 960 min Sum 1440 min Sum 280 min Sum 320 min Sum	(mm/ ner 184. ner 139. ner 100. ner 57. ner 40. ner 32. ner 22. ner 18. ner 15. ner 12. ner 10. ner 5. ner 4. ner 3. ner 3. ner 2. zer 184.	<pre>'hr) Vo 230 179 655 217 887 183 977 093 037 932 204 328 306 252 160 596 230</pre>	Lume X m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	701 ume (m ³) 1710.8 2671.9 4098.1 4670.7 5012.0 5263.1 5639.9 5922.5 6152.3 6347.7 6673.4 7171.8 7940.4 8474.7 9394.3	(mins) 25 40 68 126 184 242 312 372 436 504 640 912 1296 1652 2344	
	Event 15 min Sum 30 min Sum 30 min Sum 40 min Sum 120 min Sum 140 min Sum 1440 min Sum 280 min Sum 280 min Sum 3700 min Sum 3700 min Sum 3700 min Sum 3700	(mm/ ner 184. ner 139. ner 100. ner 57. ner 40. ner 32. ner 22. ner 18. ner 12. ner 15. ner 12. ner 5. ner 4. ner 3. ner 3. ner 4. ner 184. cer 139.	<pre>'hr) Vo 230 179 655 217 887 183 977 093 037 932 204 328 306 252 160 596 230 179</pre>	Lume X m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	701 ume (m ³) 1710.8 2671.9 4098.1 4670.7 5012.0 5263.1 5639.9 5922.5 6152.3 6347.7 6673.4 7171.8 7940.4 8474.7 9394.3 10417.7 2339.3	(mins) 25 40 68 126 184 242 312 372 436 504 640 912 1296 1652 2344 3048 26	
	Event 15 min Sum 30 min Sum 30 min Sum 40 min Sum 120 min Sum 140 min Sum 140 min Sum 120 min Sum 130 min Sum	(mm/ ner 184. ner 139. ner 100. ner 57. ner 40. ner 32. ner 22. ner 18. ner 15. ner 12. ner 10. ner 5. ner 4. ner 3. ner 4. ner 184. zer 184. zer 139. zer 100. zer 57.	<pre>'hr) Vo 230 179 655 217 887 183 977 093 037 932 204 328 306 252 160 596 230 179 655 217</pre>	Lume X m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	701 ume (m ³) 1710.8 2671.9 4098.1 4670.7 5012.0 5263.1 5639.9 5922.5 6152.3 6347.7 6673.4 7171.8 7940.4 8474.7 9394.3 10417.7 2339.3 3612.9	(mins) 25 40 68 126 184 242 312 372 436 504 640 912 1296 1652 2344 3048 26 40	


Mott MacDonalu i	Pvt Ltd						Page 2
Jnit No. 101, 1s	st Floor, Nom						
Hiranandani Garo	den. Powai. M						
Maharashtrs, 400							
			Deelaw	l l	NTA T 1 O 1 E	2.0	_ Micro
Date 9/12/2024 1			-	-	NAI1015	38	Drainag
File AT01 Pond.S	SRCX		Checke	-			5.5
Innovyze			Source	Contr	col 2020	.1.3	
Summ	ary of Result	ts for	<u>r 1000</u>	year	<u>Return</u> 1	Period (+48%	<u>)</u>
	Storm	Max	Max	Max	Max	Status	
	Event		-	(1/s)	ol Volume		
		(m)	(m)	(1/5)) (m ³)		
	240 min Winter	51.06	1 1.161	. 125.	.7 6080.6	Flood Risk	
	360 min Winter	51.05	2 1.152	125.	.3 6032.8	Flood Risk	
	480 min Winter					Flood Risk	
	600 min Winter					Flood Risk	
	720 min Winter					Flood Risk	
1	960 min Winter 440 min Winter					Flood Risk Flood Risk	
	2160 min Winter				.9 3968.3		
	2880 min Winter				.9 3188.0		
	320 min Winter						
r.	5760 min Winter	50.25	4 0.354	96.	.6 1746.8	0 K	
	Event	(mm/	hr) Vo	lume (m³)	Volume (m ³)	(mins)	
				((111)		
	240 min Winte			0.0	7049.4	238	
	360 min Winte			0.0		346	
	480 min Winte 600 min Winte			0.0 0.0	7928.6 8235.1	438 474	
	720 min Winte			0.0	8495.7	550	
	960 min Winte			0.0	8929.1	702	
	1440 min Winte	r 7.	.328	0.0	9586.8	1000	
	2160 min Winte		.306		10610.5		
	2880 min Winte		.252	0.0	11330.2	1816	
	4320 min Winte			0.0	12577.1		
	5760 min Winte	r 2.	.596	0.0	13907.0	3072	

Mott MacDonald Pvt Ltd		Page 3
Unit No. 101, 1st Floor, Nom		
Hiranandani Garden, Powai, M		
Maharashtrs, 400076 India		Micro
Date 9/12/2024 11:04 AM	Designed by NAI101538	Drainage
File AT01 Pond.SRCX	Checked by	brainage
Innovyze	Source Control 2020.1.3	
Do-	infall Details	
Rainfall Mode	el FEH	
Return Period (years		
FEH Rainfall Versio Site Locatio	on 2013 on GB 140358 931952 NB 40358 31952	
Data Typ		
Summer Storm Winter Storm		
Cv (Summer		
Cv (Winter	1.000	
Shortest Storm (mins Longest Storm (mins	,	
Climate Change	,	
<u>Tim</u>	ne Area Diagram	
Tota	al Area (ha) 5.601	
Time (mins) Area Ti		
From: To: (ha) Fro	om: To: (ha) From: To: (ha)	
0 4 1.867	4 8 1.867 8 12 1.867	
©198	2-2020 Innovyze	

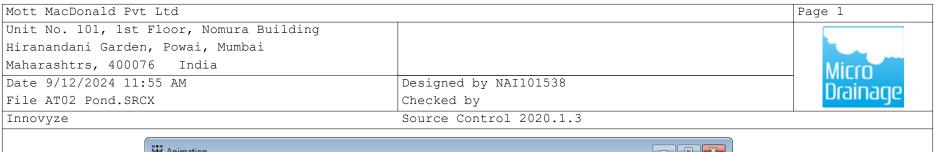
Mott MacDonald Pvt Ltd			Page 4					
Unit No. 101, 1st Floor, Nom								
Hiranandani Garden, Powai, M								
Maharashtrs, 400076 India			Micro					
Date 9/12/2024 11:04 AM	Designed by NA	I101538	Drainage					
File AT01 Pond.SRCX	Checked by		brainacje					
Innovyze	Source Control	2020.1.3						
<u> </u>	Model Details							
Storage is On	line Cover Level	(m) 51.100						
Tank	or Pond Structu	ure						
Inve	rt Level (m) 49.90	0						
Depth (m) Area (m²) Dep	oth (m) Area (m²)	Depth (m) Area (m ²)						
0.000 4800.0	0.800 5407.5	1.100 5644.7						
<u>Hydro-Brake®</u>	Optimum Outflo	w Control						
Desig Design A Sump Dia	n Head (m) Flow (l/s) Flush-Flo™	-0407-1050-0800-1050 0.800 105.0 Calculated ise upstream storage Surface Yes 407 49.900						
Minimum Outlet Pipe Dia Suggested Manhole Dia	meter (mm)	450 2100						
Control Po	ints Head (m) Flow (l/s)						
	alculated) 0.80							
E	Flush-Flo™ 0.53 Kick-Flo® 0.73							
Mean Flow over H		- 74.3						
The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated								
Depth (m) Flow (1/s) Depth (m) Flow	v (1/s) Depth (m)	Flow (1/s) Depth (m) Flow (l/s)					
0.100 11.1 1.200	127.8 3.000	199.9 7.00						
0.200 39.9 1.400 0.300 77.3 1.600	137.7 3.500 147.0 4.000	215.5 7.50 230.1 8.00						
0.400 102.4 1.800	155.7 4.500	243.8 8.50						
0.500 104.8 2.000	163.9 5.000	256.8 9.00						
0.600 104.4 2.200	171.7 5.500	269.1 9.50	348.8					
0.800 104.9 2.400	179.2 6.000	280.8						
1.000 116.9 2.600	186.3 6.500	292.1						

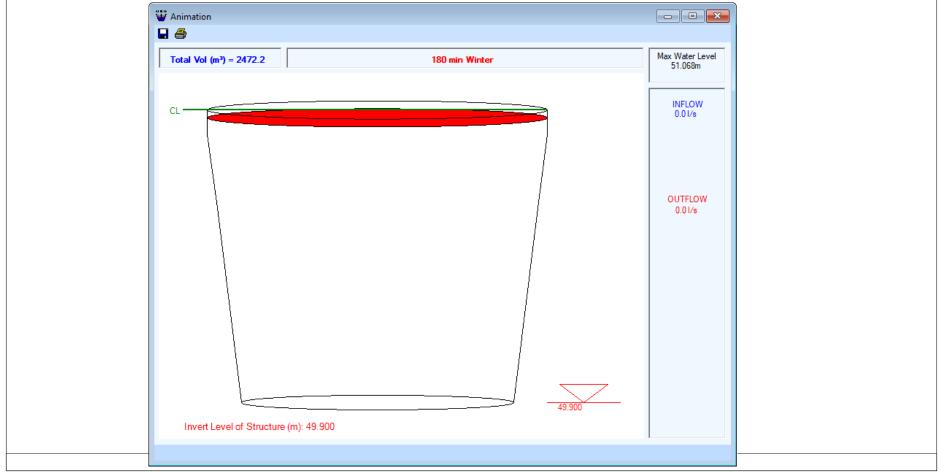
Mott MacDonald Pvt Ltd		Page 1
Unit No. 101, 1st Floor, Nomura Building		
Hiranandani Garden, Powai, Mumbai		
Maharashtrs, 400076 India		Micro
Date 9/12/2024 10:58 AM	Designed by NAI101538	
File AT01 Pond.SRCX	Checked by	Drainage
Innovyze	Source Control 2020.1.3	

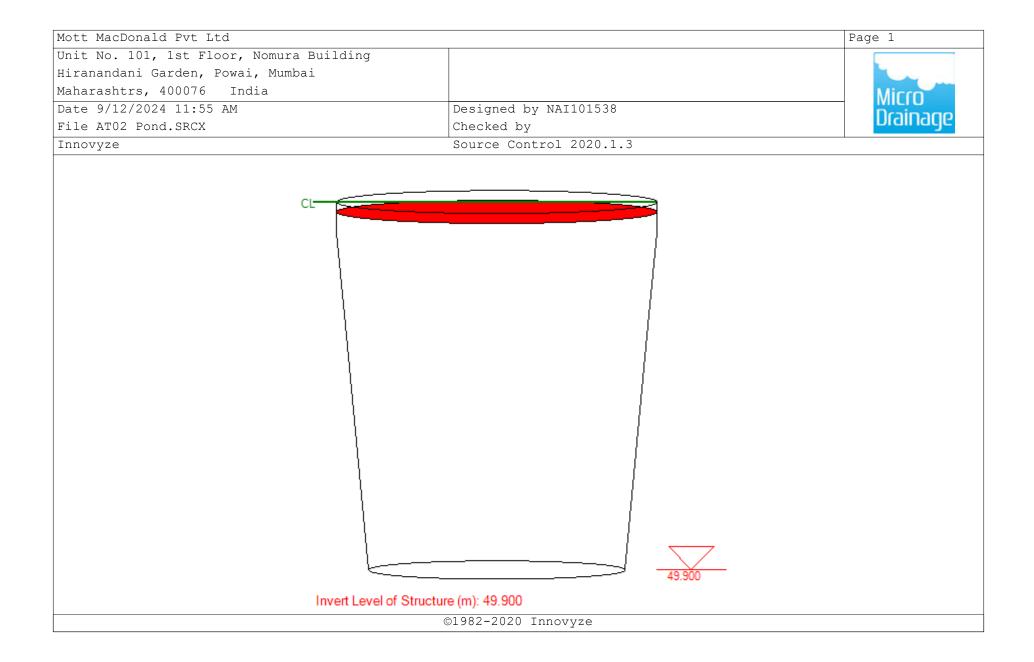
Mott MacDonal	d Pvt L	td							Page 1
Jnit No. 101,	1st Fl	oor,	Nom.						
Hiranandani G	Garden,	Powai	. м.						
Maharashtrs,		Ind							
Date 9/12/202			(IU	Dog	ianad	by NAI	10152	0	- Micro
		ΑМ			2	-	10153	8	Drainac
File AT02 Pon	id.SRCX				cked k				
Innovyze				Sou	rce Co	ontrol	2020.	1.3	
<u>S</u>	ummary o	of Re	sults	for 2	200 yea	ar Reti	irn Pe	eriod (+48%	5)
		Storm	ı	Max	Max	Max	Max	Status	
		Event	:		-	Control		e	
				(m)	(m)	(1/s)	(m³)		
	15	min S	Summer	50.209	0.309	72.8	797.	в ок	
				50.339			1150.		
				50.499		85.0			
	120	min S	Summer	50.547	0.647	85.0	1732.	7 ОК	
				50.553		85.0			
						85.0			
				50.540		85.0 85.0	1711.		
				50.520		85.0 85.0			
				50.497					
				50.424			1385.		
	1440	min S	Summer	50.340	0.440	84.6	1152.3	2 ОК	
				50.256		82.5	924.	о к	
				50.215			814.		
				50.170			695.		
				50.144			625. 1064.		
				50.486		85.0			
				50.701		85.0			
				50.774		88.7			
	180	min W	linter	50.791	0.891	89.5	2444.	5 ОК	
		Storm		Rain	Flood	d Diach		'ime-Peak	
		Event			Volum		-	(mins)	
				(/	(m ³)	(m		(
	15	min S	ummer	138.291	0	.0 7	82.0	24	
	30	min C.	ummor				02.0		
				102.386		.0 11	84.6	38	
	60	min S	ummer	73.216	0	.0 11 .0 17	84.6 56.8	66	
	60 120	min S min S	ummer ummer	73.216 42.979	0	.0 11 .0 17 .0 20	84.6 56.8 67.5	66 122	
	60 120 180	min Si min Si min Si	ummer ummer ummer	73.216 42.979 31.233	0	.0 11 .0 17 .0 20 .0 22	84.6 56.8 67.5 56.0	66 122 162	
	60 120 180 240	min Si min Si min Si min Si	ummer ummer ummer ummer	73.216 42.979 31.233 24.853		.0 11 .0 17 .0 20 .0 22 .0 23	84.6 56.8 67.5	66 122	
	60 120 180 240 360	min Si min Si min Si	ummer ummer ummer ummer ummer	73.216 42.979 31.233		.0 11 .0 17 .0 20 .0 22 .0 23 .0 26	.84.6 256.8 967.5 256.0 95.0	66 122 162 192	
	60 120 180 240 360 480	min Si min Si min Si min Si min Si	ummer ummer ummer ummer ummer	73.216 42.979 31.233 24.853 17.992		.0 11 .0 17 .0 20 .0 22 .0 23 .0 26 .0 27	84.6 56.8 67.5 56.0 95.0 602.6	66 122 162 192 256	
	60 120 180 240 360 480 600 720	min Si min Si min Si min Si min Si min Si min Si	ummer ummer ummer ummer ummer ummer ummer	73.216 42.979 31.233 24.853 17.992 14.278 11.929 10.300		.0 11 .0 17 .0 20 .0 22 .0 23 .0 26 .0 27 .0 28 .0 29	84.6 56.8 67.5 56.0 95.0 602.6 54.9 877.5 881.6	66 122 162 192 256 324 390 458	
	60 120 180 240 360 480 600 720 960	min Si min Si min Si min Si min Si min Si min Si min Si	ummer ummer ummer ummer ummer ummer ummer ummer	73.216 42.979 31.233 24.853 17.992 14.278 11.929 10.300 8.174		.0 11 .0 17 .0 20 .0 22 .0 23 .0 26 .0 27 .0 28 .0 29 .0 31	84.6 56.8 67.5 56.0 95.0 602.6 54.9 877.5 81.6 54.5	66 122 192 256 324 390 458 586	
	60 120 180 240 360 480 600 720 960 1440	min Si min Si min Si min Si min Si min Si min Si min Si	ummer ummer ummer ummer ummer ummer ummer ummer ummer	73.216 42.979 31.233 24.853 17.992 14.278 11.929 10.300 8.174 5.914		.0 11 .0 17 .0 20 .0 22 .0 23 .0 26 .0 27 .0 28 .0 29 .0 31 .0 34	.84.6 56.8 967.5 56.0 95.0 602.6 54.9 981.6 54.5 54.5 16.9	66 122 192 256 324 390 458 586 832	
	60 120 180 240 360 480 600 720 960 1440 2160	min St min St min St min St min St min St min St min St min St min St	ummer ummer ummer ummer ummer ummer ummer ummer ummer ummer	73.216 42.979 31.233 24.853 17.992 14.278 11.929 10.300 8.174 5.914 4.308		.0 11 .0 17 .0 20 .0 22 .0 23 .0 26 .0 27 .0 28 .0 29 .0 31 .0 34 .0 37	84.6 56.8 67.5 56.0 995.0 02.6 54.9 81.6 54.5 16.9 71.1	66 122 162 256 324 390 458 586 832 1176	
	60 120 180 240 360 480 600 720 960 1440 2160 2880	min Si min Si min Si min Si min Si min Si min Si min Si min Si min Si	ummer ummer ummer ummer ummer ummer ummer ummer ummer ummer	73.216 42.979 31.233 24.853 17.992 14.278 11.929 10.300 8.174 5.914 4.308 3.465		.0 11 .0 17 .0 20 .0 22 .0 23 .0 26 .0 27 .0 28 .0 29 .0 31 .0 34 .0 37 .0 40	84.6 56.8 67.5 556.0 95.0 602.6 54.9 77.5 881.6 54.5 16.9 71.1 440.4	66 122 162 256 324 390 458 586 832 1176 1532	
	60 120 180 240 360 480 600 720 960 1440 2160 2880 4320	min St min St min St min St min St min St min St min St min St min St	ummer ummer ummer ummer ummer ummer ummer ummer ummer ummer ummer	73.216 42.979 31.233 24.853 17.992 14.278 11.929 10.300 8.174 5.914 4.308		.0 11 .0 17 .0 20 .0 22 .0 23 .0 26 .0 27 .0 28 .0 29 .0 31 .0 34 .0 37 .0 40 .0 40	84.6 56.8 67.5 56.0 995.0 02.6 54.9 81.6 54.5 16.9 71.1	66 122 162 256 324 390 458 586 832 1176	
	60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760	min Si min Si	ummer ummer ummer ummer ummer ummer ummer ummer ummer ummer ummer	73.216 42.979 31.233 24.853 17.992 14.278 11.929 10.300 8.174 5.914 4.308 3.465 2.582		.0 11 .0 17 .0 20 .0 22 .0 23 .0 26 .0 27 .0 28 .0 29 .0 31 .0 34 .0 37 .0 40 .0 44 .0 49	84.6 56.8 67.5 556.0 95.0 602.6 54.9 77.5 81.6 54.5 16.9 71.1 40.4 99.1	66 122 162 256 324 390 458 586 832 1176 1532 2252	
	60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 15	min Si min Si	ummer ummer ummer ummer ummer ummer ummer ummer ummer ummer ummer inter	73.216 42.979 31.233 24.853 17.992 14.278 11.929 10.300 8.174 5.914 4.308 3.465 2.582 2.123		.0 11 .0 17 .0 20 .0 22 .0 23 .0 26 .0 27 .0 28 .0 29 .0 31 .0 34 .0 37 .0 40 .0 42 .0 42 .0 42 .0 42 .0 10	84.6 56.8 67.5 556.0 95.0 602.6 54.9 77.5 81.6 54.5 16.9 71.1 40.4 99.1 77.2	66 122 162 256 324 390 458 586 832 1176 1532 2252 2992	
	60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 15 30 60	min Si min Si	ummer ummer ummer ummer ummer ummer ummer ummer ummer ummer inter inter	73.216 42.979 31.233 24.853 17.992 14.278 11.929 10.300 8.174 5.914 4.308 3.465 2.582 2.123 138.291 102.386 73.216		.0 11 .0 17 .0 20 .0 22 .0 23 .0 26 .0 27 .0 26 .0 27 .0 28 .0 29 .0 31 .0 34 .0 37 .0 40 .0 42 .0 42 .0 45 .0 15 .0 23	84.6 56.8 67.5 556.0 95.0 602.6 54.9 77.5 81.6 54.5 971.1 40.4 99.1 971.2 61.4 99.1 971.2 61.4 99.1 97.8 52.3	66 122 162 256 324 390 458 586 832 1176 1532 2252 2992 25 39 66	
	60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 15 30 60 120	min Si min Si	ummer ummer ummer ummer ummer ummer ummer ummer ummer ummer inter inter inter	73.216 42.979 31.233 24.853 17.992 14.278 11.929 10.300 8.174 5.914 4.308 3.465 2.582 2.123 138.291 102.386 73.216 42.979		.0 11 .0 17 .0 20 .0 22 .0 23 .0 26 .0 27 .0 28 .0 29 .0 31 .0 34 .0 37 .0 40 .0 42 .0 42 .0 45 .0 15 .0 23 .0 27	84.6 56.8 67.5 556.0 95.0 602.6 54.9 77.5 81.6 54.5 971.1 40.4 99.1 771.2 661.4 99.1 971.8 52.3 66.6	66 122 162 256 324 390 458 586 832 1176 1532 2252 2992 25 39 66 122	
	60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 15 30 60 120	min Si min Si	ummer ummer ummer ummer ummer ummer ummer ummer ummer ummer inter inter inter	73.216 42.979 31.233 24.853 17.992 14.278 11.929 10.300 8.174 5.914 4.308 3.465 2.582 2.123 138.291 102.386 73.216		.0 11 .0 17 .0 20 .0 22 .0 23 .0 26 .0 27 .0 28 .0 29 .0 31 .0 34 .0 37 .0 40 .0 42 .0 42 .0 45 .0 15 .0 23 .0 27	84.6 56.8 67.5 556.0 95.0 602.6 54.9 77.5 81.6 54.5 971.1 40.4 99.1 971.2 61.4 99.1 971.2 61.4 99.1 97.8 52.3	66 122 162 256 324 390 458 586 832 1176 1532 2252 2992 25 39 66	

	ald Pvt Lt	td						Page 2
nit No. 101	l, 1st Flo	oor, Nom	•					
iranandani	Garden, H	Powai, M						
laharashtrs,	400076	India						Micco
ate 9/12/20			Des	igned b	V NAT	101538		- Micro
'ile AT02 Pc		7111		-	-	101000		Draina
	JIIU. SRCA			cked by		0.000 1		
nnovyze			Sou	rce Con	trol	2020.1	. 3	
	Summary c	of Results	for 2	<u>00 year</u>	Retu	irn Pei	<u>ciod (+48%</u>	<u>)</u>
		Storm	Max	Max	Max	Max	Status	
		Event		Depth Co				
			(m)	(m) ((1/s)	(m³)		
	240	min Winter	50.786	0.886	89.3	2430.8	ОК	
	360	min Winter	50.765	0.865	88.2	2367.5	O K	
		min Winter						
		min Winter						
		min Winter						
		min Winter				1833.0		
		min Winter min Winter						
		min Winter				971.2 809.1		
	4320	min Winter	50 161	0.261	57 2	669 5	0 K	
	5760	min Winter	50.132	0.232	47.7		0 K	
		Storm	Rain	Flooded	Disch	arge Ti	me-Peak	
		Event		Volume		-	(mins)	
				(m³)	(m ²	³)		
	0.4.0		04 050	0.0	2.0	00 5	000	
		min Winter min Winter			32 34	03.5	230 284	
		min Winter			36		362	
		min Winter				47.2	438	
		min Winter			39		512	
		min Winter				17.9	656	
	960			0 0	45	72.7	904	
		min Winter	5.914	0.0				
	1440					35.8	1236	
	1440 2160 2880	min Winter min Winter min Winter	4.308 3.465	0.0	50 53	96.4	1560	
	1440 2160 2880 4320	min Winter min Winter min Winter min Winter	4.308 3.465 2.582	0.0 0.0 0.0	50 53 60	96.4 14.8	1560 2288	
	1440 2160 2880 4320	min Winter min Winter min Winter	4.308 3.465	0.0 0.0 0.0	50 53 60	96.4	1560	
	1440 2160 2880 4320	min Winter min Winter min Winter min Winter	4.308 3.465 2.582	0.0 0.0 0.0	50 53 60	96.4 14.8	1560 2288	
	1440 2160 2880 4320	min Winter min Winter min Winter min Winter	4.308 3.465 2.582	0.0 0.0 0.0	50 53 60	96.4 14.8	1560 2288	
	1440 2160 2880 4320	min Winter min Winter min Winter min Winter	4.308 3.465 2.582	0.0 0.0 0.0	50 53 60	96.4 14.8	1560 2288	
	1440 2160 2880 4320	min Winter min Winter min Winter min Winter	4.308 3.465 2.582	0.0 0.0 0.0	50 53 60	96.4 14.8	1560 2288	
	1440 2160 2880 4320	min Winter min Winter min Winter min Winter	4.308 3.465 2.582	0.0 0.0 0.0	50 53 60	96.4 14.8	1560 2288	
	1440 2160 2880 4320	min Winter min Winter min Winter min Winter	4.308 3.465 2.582	0.0 0.0 0.0	50 53 60	96.4 14.8	1560 2288	
	1440 2160 2880 4320	min Winter min Winter min Winter min Winter	4.308 3.465 2.582	0.0 0.0 0.0	50 53 60	96.4 14.8	1560 2288	
	1440 2160 2880 4320	min Winter min Winter min Winter min Winter	4.308 3.465 2.582	0.0 0.0 0.0	50 53 60	96.4 14.8	1560 2288	
	1440 2160 2880 4320	min Winter min Winter min Winter min Winter	4.308 3.465 2.582	0.0 0.0 0.0	50 53 60	96.4 14.8	1560 2288	
	1440 2160 2880 4320	min Winter min Winter min Winter min Winter	4.308 3.465 2.582	0.0 0.0 0.0	50 53 60	96.4 14.8	1560 2288	
	1440 2160 2880 4320	min Winter min Winter min Winter min Winter	4.308 3.465 2.582	0.0 0.0 0.0	50 53 60	96.4 14.8	1560 2288	
	1440 2160 2880 4320	min Winter min Winter min Winter min Winter	4.308 3.465 2.582	0.0 0.0 0.0	50 53 60	96.4 14.8	1560 2288	
	1440 2160 2880 4320	min Winter min Winter min Winter min Winter	4.308 3.465 2.582	0.0 0.0 0.0	50 53 60	96.4 14.8	1560 2288	
	1440 2160 2880 4320	min Winter min Winter min Winter min Winter	4.308 3.465 2.582	0.0 0.0 0.0	50 53 60	96.4 14.8	1560 2288	
	1440 2160 2880 4320	min Winter min Winter min Winter min Winter	4.308 3.465 2.582	0.0 0.0 0.0	50 53 60	96.4 14.8	1560 2288	

Designed by NAI101538 Checked by	Micro					
	Micro					
	Micro					
	Drainage					
File AT02 Pond.SRCX Checked by						
Source Control 2020.1.3						
infall Details						
on GB 140358 931952 NB 40358 31952						
pe Point						
ms Yes						
,						
s) 15						
s) 5760						
8 +48						
<u>ne Area Diagram</u>						
al Area (ha) 3.262						
ime (mins) Area Time (mins) Are	a					
rom: To: (ha) From: To: (ha	.)					
4 8 1.087 8 12 1.08	37					
	s) 200 on 2013 on GB 140358 931952 NB 40358 31952 oe Point ns Yes ns Yes ns Yes c) 0.750 c) 1.000 s) 55 s) 5760 % +48 ne Area nins) Area om: To: (ha) 3.262					


Mott MacDonald Pvt Ltd		Page 4								
Unit No. 101, 1st Floor, Nom										
Hiranandani Garden, Powai, M										
Maharashtrs, 400076 India		Micco								
Date 9/12/2024 11:53 AM	Designed by NAI101538	Drainage								
File AT02 Pond.SRCX	1									
Innovyze	Source Control 2020.1.3									
]	<u>Model Details</u>									
Storage is Or	line Cover Level (m) 51.100									
<u>Tank</u>	or Pond Structure									
Inve	rt Level (m) 49.900									
Depth (m) Area (m²) De	oth (m) Area (m²) Depth (m) Area (m	n²)								
0.000 2500.0	0.800 2943.5 1.100 311	9.1								
<u>Hydro-Brake@</u>	Optimum Outflow Control									
Unit	Reference MD-SHE-0372-8500-0800-8									
		800								
Design	Flow (1/s) 8 Flush-Flo™ Calcula	5.0 ted								
	Objective Minimise upstream stor	age								
	pplication Surf	ace Yes								
1		372								
	Level (m) 49.									
Minimum Outlet Pipe Dia Suggested Manhole Dia		450 100								
Suggested Maintore Dia		100								
Control Pc										
Design Point (C	alculated) 0.800 85.0 Flush-Flo™ 0.496 85.0									
	Kick-Flo® 0.711 80.2									
Mean Flow over	Head Range - 61.9									
Hydro-Brake® Optimum as specified.	The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated									
Depth (m) Flow (1/s) Depth (m) Flor	v (l/s) Depth (m) Flow (l/s) Depth	(m) Flow (1/s)								
0.100 10.5 1.200		.000 244.9								
0.200 37.2 1.400 0.300 70.1 1.600		.500 253.4 .000 261.5								
0.400 83.9 1.800		.500 266.7								
0.500 85.0 2.000		.000 274.6								
0.600 83.9 2.200 0.800 85.0 2.400	139.0 5.500 217.6 9 145.0 6.000 227.1 9	.500 282.3								
1.000 94.7 2.600	150.8 6.500 236.2									
· · · · · · · · · · · · · · · · · · ·										
	32-2020 Innovyze									


Mott MacDonald	Pvt Ltd						Page 1
Unit No. 101, 1	st Floor, Nor	n					
Hiranandani Gar							
Maharashtrs, 40							
Date 9/12/2024				ad br N	17 T 1 0 1 E	20	Micro
			-	ed by N	IAIIUIS	20	Drainag
File AT02 Pond.	SRCX		Checke				
Innovyze		5	Source	Contro	1 2020	.1.3	
Summ	<u>mary of Resul</u>	ts for	1000	<u>year R</u>	eturn 1	<u> </u>	<u>)</u>
	Storm	Max	Max	Max	Max	Status	
	Event	(m)	(m)	Control (1/s)	(m ³)		
		(,	(,	(1,0)	()		
	15 min Summer	50.307	0.407	84.0	1063.3	O K	
	30 min Summer				1587.6	O K	
	60 min Summer				2248.4	ОК	
	120 min Summer 180 min Summer				2389.5 2391.7	O K	
	240 min Summer				2391.7	ок ок	
	360 min Summer				2285.9	0 K	
	480 min Summer				2210.4	ОК	
	600 min Summer				2130.0	0 K	
	720 min Summer				2047.3	O K	
	960 min Summer				1876.9	ОК	
	1440 min Summer				1555.9	ОК	
	2160 min Summer 2880 min Summer				1209.6 993.5	ок ок	
	4320 min Summer				804.8	0 K	
	5760 min Summer				716.5	ОК	
	15 min Winter	50.440	0.540	85.0	1429.6	O K	
	30 min Winter				2147.5	0 K	
	60 min Winter					Flood Risk	
	120 min Winter 180 min Winter					Flood Risk Flood Risk	
	100 mill wincer	51.000	1.100	102.1	5255.5	FIOOD NISK	
	Storm	Rai	in Flo			Time-Peak	
	Erront	(-	(ming)	
	Event	(mm/	,	lume V	olume	(mins)	
	Event	(mm/	,		-	(mins)	
	15 min Summe	er 184.	230	lume V m ³) 0.0	olume (m ³) 1060.4	25	
	15 min Summ 30 min Summ	er 184. er 139.	230 179	lume V m ³) 0.0 0.0	colume (m ³) 1060.4 1630.1	25 39	
	15 min Summ 30 min Summ 60 min Summ	er 184. er 139. er 100.	230 179 655	lume V m ³) 0.0 0.0 0.0	Colume (m ³) 1060.4 1630.1 2426.3	25 39 68	
	15 min Summ 30 min Summ 60 min Summ 120 min Summ	er 184. er 139. er 100. er 57.	(1 230 179 655 217	lume V m ³) 0.0 0.0 0.0 0.0	Colume (m ³) 1060.4 1630.1 2426.3 2762.2	25 39 68 124	
	15 min Summ 30 min Summ 60 min Summ	er 184. er 139. er 100. er 57. er 40.	230 179 655 217 887	lume V m ³) 0.0 0.0 0.0	Colume (m ³) 1060.4 1630.1 2426.3	25 39 68	
	15 min Summ 30 min Summ 60 min Summ 120 min Summ 180 min Summ	er 184. er 139. er 100. er 57. er 40. er 32.	(1 230 179 655 217 887 183	lume V m ³) 0.0 0.0 0.0 0.0 0.0 0.0	'olume (m ³) 1060.4 1630.1 2426.3 2762.2 2962.6	25 39 68 124 180	
	15 min Summ 30 min Summ 60 min Summ 120 min Summ 180 min Summ 240 min Summ	er 184. er 139. er 100. er 57. er 40. er 32. er 22.	230 179 655 217 887 183 977	lume V 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(m ³) 1060.4 1630.1 2426.3 2762.2 2962.6 3110.2	25 39 68 124 180 210	
	15 min Summa 30 min Summa 60 min Summa 120 min Summa 180 min Summa 240 min Summa 360 min Summa 600 min Summa	er 184. er 139. er 100. er 57. er 40. er 32. er 22. er 18. er 15.	(1) 230 179 655 217 887 183 977 093 037	Lume V m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	colume (m ³) 1060.4 1630.1 2426.3 2762.2 2962.6 3110.2 3332.2 3499.1 3635.3	25 39 68 124 180 210 272 338 406	
	15 min Summa 30 min Summa 60 min Summa 120 min Summa 180 min Summa 240 min Summa 360 min Summa 600 min Summa	er 184. er 139. er 100. er 57. er 40. er 32. er 22. er 18. er 15. er 12.	(1) 230 179 655 217 887 183 977 093 037 932	Lume V m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	colume (m ³) 1060.4 1630.1 2426.3 2762.2 2962.6 3110.2 3332.2 3499.1 3635.3 3751.5	25 39 68 124 180 210 272 338 406 476	
	15 min Summ 30 min Summ 60 min Summ 120 min Summ 240 min Summ 360 min Summ 480 min Summ 600 min Summ 720 min Summ 960 min Summ	er 184. er 139. er 100. er 57. er 40. er 32. er 22. er 18. er 15. er 12. er 10.	(1) 230 179 655 217 887 183 977 093 037 932 204	Lume V m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	rolume (m ³) 1060.4 1630.1 2426.3 2762.2 2962.6 3110.2 3332.2 3499.1 3635.3 3751.5 3946.3	25 39 68 124 180 210 272 338 406 476 610	
	15 min Summa 30 min Summa 60 min Summa 120 min Summa 180 min Summa 240 min Summa 360 min Summa 600 min Summa	er 184. er 139. er 100. er 57. er 40. er 32. er 22. er 18. er 15. er 12. er 10. er 7.	(1) 230 179 655 217 887 183 977 093 037 932 204 328	Lume V 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	colume (m ³) 1060.4 1630.1 2426.3 2762.2 2962.6 3110.2 3332.2 3499.1 3635.3 3751.5 3946.3 4245.5	25 39 68 124 180 210 272 338 406 476 610 864	
	15 min Summ 30 min Summ 60 min Summ 120 min Summ 240 min Summ 360 min Summ 480 min Summ 600 min Summ 720 min Summ 960 min Summ	er 184. er 139. er 100. er 57. er 40. er 32. er 22. er 18. er 15. er 12. er 10. er 5.	(1) 230 179 655 217 887 183 977 093 037 932 204 328 306	Lume V m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	rolume (m ³) 1060.4 1630.1 2426.3 2762.2 2962.6 3110.2 3332.2 3499.1 3635.3 3751.5 3946.3	25 39 68 124 180 210 272 338 406 476 610	
	15 min Summ 30 min Summ 60 min Summ 120 min Summ 240 min Summ 360 min Summ 480 min Summ 600 min Summ 720 min Summ 960 min Summ 1440 min Summ	er 184. er 139. er 100. er 57. er 40. er 32. er 22. er 18. er 15. er 10. er 10. er 5. er 4.	(1) 230 179 655 217 887 183 977 093 037 932 204 328 306	Lume V 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Colume (m ³) 1060.4 1630.1 2426.3 2762.2 2962.6 3110.2 3332.2 3499.1 3635.3 3751.5 3946.3 4245.5 4649.3	25 39 68 124 180 210 272 338 406 476 610 864 1216	
	15 min Summ 30 min Summ 60 min Summ 120 min Summ 120 min Summ 240 min Summ 360 min Summ 480 min Summ 720 min Summ 960 min Summ 1440 min Summ 2880 min Summ 4320 min Summ 5760 min Summ	er 184. er 139. er 100. er 57. er 40. er 32. er 18. er 15. er 12. er 10. er 5. er 4. er 3. er 3. er 3.	(*************************************	Lume V 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Colume (m ³) 1060.4 1630.1 2426.3 2762.2 2962.6 3110.2 3332.2 3499.1 3635.3 3751.5 3946.3 4245.5 4649.3 4964.4	25 39 68 124 180 210 272 338 406 476 610 864 1216 1560 2252 2992	
	15 min Summ 30 min Summ 60 min Summ 120 min Summ 120 min Summ 240 min Summ 360 min Summ 480 min Summ 720 min Summ 960 min Summ 1440 min Summ 2880 min Summ 4320 min Summ 5760 min Summ 15 min Winte	er 184. er 139. er 100. er 57. er 40. er 32. er 18. er 15. er 12. er 10. er 5. er 4. er 3. er 3. er 3. er 184.	(1) 230 179 655 217 887 183 977 093 037 932 204 328 306 252 160 596 230	Lume V 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Colume (m ³) 1060.4 1630.1 2426.3 2762.2 2962.6 3110.2 3332.2 3499.1 3635.3 3751.5 3946.3 4245.5 4649.3 4964.4 5516.3 6082.0 1432.4	25 39 68 124 180 210 272 338 406 476 610 864 1216 1560 2252 2992 25	
	15 min Summ 30 min Summ 60 min Summ 120 min Summ 120 min Summ 240 min Summ 360 min Summ 480 min Summ 720 min Summ 960 min Summ 1440 min Summ 2880 min Summ 4320 min Summ 5760 min Summ 15 min Wint 30 min Wint	er 184. er 139. er 100. er 57. er 40. er 32. er 18. er 15. er 12. er 10. er 5. er 4. er 3. er 3. er 4. er 3. er 184. er 139.	(1) 230 179 655 217 887 183 977 093 037 932 204 328 306 252 160 596 230 179	Lume V 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Colume (m ³) 1060.4 1630.1 2426.3 2762.2 2962.6 3110.2 3332.2 3499.1 3635.3 3751.5 3946.3 4245.5 4649.3 4964.4 5516.3 6082.0 1432.4 2190.6	25 39 68 124 180 210 272 338 406 476 610 864 1216 1560 2252 2992 25 39	
	15 min Summ 30 min Summ 60 min Summ 120 min Summ 120 min Summ 240 min Summ 240 min Summ 480 min Summ 600 min Summ 720 min Summ 960 min Summ 1440 min Summ 2880 min Summ 4320 min Summ 5760 min Summ 15 min Wint 30 min Wint 60 min Wint 60 min Wint 60 min Wint 60 min Wint	er 184. er 139. er 100. er 57. er 40. er 32. er 22. er 18. er 15. er 10. er 5. er 4. er 3. er 4. er 3. er 184. er 139. er 100.	(1) 230 179 655 217 887 183 977 093 037 932 204 328 306 252 160 596 230 179 655	Lume V 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Colume (m ³) 1060.4 1630.1 2426.3 2762.2 2962.6 3110.2 3332.2 3499.1 3635.3 3751.5 3946.3 4245.5 4649.3 4964.4 5516.3 6082.0 1432.4 2190.6 3245.0	25 39 68 124 180 210 272 338 406 476 610 864 1216 1560 2252 2992 25 39 68	
	15 min Summ 30 min Summ 60 min Summ 120 min Summ 120 min Summ 240 min Summ 360 min Summ 480 min Summ 720 min Summ 960 min Summ 1440 min Summ 2880 min Summ 4320 min Summ 5760 min Summ 15 min Wint 30 min Wint	er 184. er 139. er 100. er 57. er 40. er 32. er 18. er 15. er 12. er 10. er 5. er 4. er 3. er 4. er 3. er 184. er 139. er 100. er 57.	(1) 230 179 655 217 887 183 977 093 037 932 204 328 306 252 160 596 230 179 655 217	Lume V 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Colume (m ³) 1060.4 1630.1 2426.3 2762.2 2962.6 3110.2 3332.2 3499.1 3635.3 3751.5 3946.3 4245.5 4649.3 4964.4 5516.3 6082.0 1432.4 2190.6	25 39 68 124 180 210 272 338 406 476 610 864 1216 1560 2252 2992 25 39	


	024 11:54 AM			/ NAI1015	38
ovyze	ond.SRCX		cked by	rol 2020	1 3
JVYZE		500		.101 2020	•1•3
	Summary of Result	s for 1	<u>000 year</u>	Return	Period (+48
	Storm	Max 1	Max Max	k Max	Status
	Event		epth Contr (m) (1/s	rol Volume s) (m³)	
	040				
	240 min Winter 360 min Winter				Flood Risk Flood Risk
	480 min Winter				
	600 min Winter	50 944 1	044 9		
	720 min Winter 960 min Winter	50.903 1	.003 94		Flood Risk
					Flood Risk
	1440 min Winter 2160 min Winter			5.0 2059.4 5.0 1406 9	
	2880 min Winter	50.291 0	.391 83	3.6 1017.8	ОК
	4320 min Winter	50.199 0	.299 65	9.9 771.7	0 K
	5760 min Winter	50.164 0	.264 58	3.2 678.2	0 K
	Storm	Rain	Flooded	Discharge	Time-Deak
	Event		Volume	_	(mins)
			(m³)	(m³)	
	240 min Winte	r 32.183		4157.2	232
	360 min Winte				
	480 min Winte			4676.1	370
	600 min Winte 720 min Winte			4857.8 5012.9	446 522
	960 min Winte			5272.6	670
	1440 min Winte			5674.9	956
	2160 min Winte			6206.8	1320
	2880 min Winte			6628.6	1624
	4320 min Winte 5760 min Winte			7371.7 8114.3	
	5760 MIIN WINCE	1 2.596	0.0	0114.3	3000

Unit No. 101, 1st Floor, Nom Hiranandani Garden, Powai, M Maharashtrs, 400076 India Date 9/12/2024 11:54 AM File AT02 Pond.SRCX Innovyze Source Control 2020.1.3 Rainfall Model Return Period (years) Return Period (years) Sumer Storms Winter Storms Ves Winter Storms Cv (Summer) Cv (Summer) Cv (Summer) Cv (Summer) Cv (Summer) Cv (Summer) Colimate Change % Time Area Diagram Total Area (ha) 3.262 Time (mins) Area From: To: (ha) 0 4 1.087 4 8 1.087 Barbon Starter Stores Colimate Change % Colimate Change % Colimate (mins) Area Starter Stores Colimate (mins) Area Starter Stores Starter Stores
Maharashtrs, 400076 India Date 9/12/2024 11:54 AM Designed by NAI101538 File AT02 Pond.SRCX Decked by Innovyze Source Control 2020.1.3 Rainfall Details Rainfall Model FEH Return Period (years) 1000 FEH Rainfall Version 2013 Site Location GB 140358 931952 NB 40358 31952 Data Type Point Summer Storms Yes Cv (Summer) 0.750 Cv (Winter) 1.000 Shortest Storm (mins) 5760 Climate Change % +48 <u>Time Area Diagram</u> Total Area (ha) 3.262 <u>Time (mins) Area</u> <u>Time (mins) Area</u> From: To: (ha) <u>Fine: To: (ha)</u>
Date 9/12/2024 11:54 AM Designed by NAI101538 File AT02 Pond.SRCX Checked by Innovyze Source Control 2020.1.3 Rainfall Details Rainfall Model FEH Reinfall Model FEH Rainfall Details Rainfall Details Rainfall Version Source Control 2020.1.3 Rainfall Details Rainfall Details Return Period (years) 1000 FEH Rainfall Version 2013 Site Location GB 140358 931952 NB 40358 31952 Data Type Point Summer Storms Yes Winter Storms Yes CV (Summer) 0.750 CV (Summer) 1.000 Shortest Storm (mins) 5760 Climate Change % +48 Time Area Diagram Total Area (ha) 3.262 Time (mins) Area From: To: (ha)
Date 9/12/2024 11:34 AM Designed by NAI101538 Checked by File AT02 Pond.SRCX Checked by Innovyze Source Control 2020.1.3 Rainfall Details Rainfall Model FEH Return Period (years) J000 FEH Rainfall Version Summer Storms Data Type Data Type Out Summer Storms Winter Storms CV (Summer) Out Storm (mins) Shortest Storm (mins) Stel Deagram Total Area Diagram Total Area (ha) 3.262
Innovyze Source Control 2020.1.3 Innovyze Source Control 2020.1.3 Rainfall Details Rainfall Model FEH Return Period (years) 1000 FEH Rainfall Version 2013 Site Location GB 140358 931952 NB 40358 31952 Data Type Point Summer Storms Yes Winter Storms Yes Winter Storms Yes Cv (Summer) 0.750 Cv (Winter) 1.000 Shortest Storm (mins) 15 Longest Storm (mins) 15 Longest Storm (mins) 5760 Climate Change % +48 Time Area Diagram Total Area (ha) 3.262 Time (mins) Area Time (mins) Area From: To: (ha) From: To: (ha)
Rainfall Details Rainfall Model Rainfall Model FEH Return Period (years) 1000 FEH Rainfall Version 2013 Site Location GB 140358 931952 NB 40358 31952 Data Type Data Type Point Summer Storms Yes Winter Storms Yes Cv (Summer) 0.750 Cv (Winter) 1.000 Shortest Storm (mins) 15 Longest Storm (mins) 5760 Climate Change % +48 Time Area Diagram Total Area (ha) 3.262 Time (mins) Area Time (mins) Area From: To: Time (mins) Area From: To: (ha)
Rainfall ModelFEHReturn Period (years)1000FEH Rainfall Version2013Site Location GB 140358 931952 NB 40358 31952Data TypePointSummer StormsYesWinter StormsYesCv (Summer)0.750Cv (Winter)1.000Shortest Storm (mins)15Longest Storm (mins)5760Climate Change %+48Time Area DiagramTotal Area (ha) 3.262Time (mins) AreaTime (mins) AreaFrom:To:(ha)From:To:(ha)
Rainfall ModelFEHReturn Period (years)1000FEH Rainfall Version2013Site Location GB 140358 931952 NB 40358 31952Data TypePointSummer StormsYesWinter StormsYesCv (Summer)0.750Cv (Winter)1.000Shortest Storm (mins)15Longest Storm (mins)5760Climate Change %+48Time Area DiagramTotal Area (ha) 3.262Time (mins) AreaTime (mins) AreaFrom:To:(ha)From:To:(ha)
Return Period (years) 1000 FEH Rainfall Version 2013 Site Location GB 140358 931952 NB 40358 31952 Data Type Data Type Point Summer Storms Yes Winter Storms Yes Cv (Summer) 0.750 Cv (Winter) 1.000 Shortest Storm (mins) 15 Longest Storm (mins) 5760 Climate Change % +48 Time Area Diagram Total Area (ha) 3.262 Time (mins) Area Time (mins) Area From: To: (ha)
FEH Rainfall Version 2013 Site Location GB 140358 931952 NB 40358 31952 Data Type Point Summer Storms Yes Winter Storms Yes Cv (Summer) 0.750 Cv (Winter) 1.000 Shortest Storm (mins) 15 Longest Storm (mins) 5760 Climate Change % +48 Time Area Diagram Total Area (ha) 3.262 Time (mins) Area Time (mins) Area From: To: To: (ha)
Site Location GB 140358 931952 NB 40358 31952 Data Type Point Summer Storms Yes Winter Storms Yes Cv (Summer) 0.750 Cv (Winter) 1.000 Shortest Storm (mins) 15 Longest Storm (mins) 5760 Climate Change % +48 <u>Time Area Diagram</u> Total Area (ha) 3.262 <u>Time (mins) Area</u> <u>Time (mins) Area</u> From: To: (ha) Time (mins) Area From: To: (ha)
Data TypePointSummer StormsYesWinter StormsYesCv (Summer)0.750Cv (Winter)1.000Shortest Storm (mins)15Longest Storm (mins)5760Climate Change %+48Time Area DiagramTotal Area (ha) 3.262Time (mins) AreaTime (mins) AreaFrom: To:(ha)Tro:Colspan="2">Time (mins) Area
Winter Storms Yes Cv (Summer) 0.750 Cv (Winter) 1.000 Shortest Storm (mins) 15 Longest Storm (mins) 5760 Climate Change % +48 Time Area Diagram Total Area (ha) 3.262 Time (mins) Area Time (mins) Area From: To: To: Time (mins) Area
Cv (Summer)0.750Cv (Winter)1.000Shortest Storm (mins)15Longest Storm (mins)5760Climate Change %+48Time Area DiagramTotal Area (ha) 3.262Time (mins) AreaTime (mins) AreaFrom: To:(ha)From: To:From: To:(ha)From: To:
Shortest Storm (mins) 15 Longest Storm (mins) 5760 Climate Change % +48 Time Area Diagram Total Area (ha) 3.262 Time (mins) Area Time (mins) Area From: To: From: To: (ha)
Longest Storm (mins) 5760 Climate Change % +48 <u>Time Area Diagram</u> Total Area (ha) 3.262 <u>Time (mins) Area</u> <u>From: To: (ha)</u> <u>Time (mins) Area</u> <u>From: To: (ha)</u> <u>From: To: (ha)</u>
Climate Change % +48 <u>Time Area Diagram</u> Total Area (ha) 3.262 <u>Time (mins) Area</u> <u>From: To: (ha)</u> <u>Time (mins) Area</u> <u>From: To: (ha)</u> <u>From: To: (ha)</u>
Total Area (ha) 3.262 Time (mins) Area From: To: (ha) From: To: (ha) From: To: (ha)
Total Area (ha) 3.262 Time (mins) Area From: To: (ha) From: To: (ha) From: To: (ha)
Time (mins) Area Time (mins) Area Time (mins) Area From: To: (ha) From: To: (ha) From: To: (ha)
From: To: (ha) From: To: (ha) From: To: (ha)
From: To: (ha) From: To: (ha) From: To: (ha)
0 4 1.087 4 8 1.087 8 12 1.087
©1982-2020 Innovyze

Mott MacDonald Pvt Ltd			Page 4						
Unit No. 101, 1st Floor, Nom									
Hiranandani Garden, Powai, M									
Maharashtrs, 400076 India			Micro						
Date 9/12/2024 11:54 AM	Designed by NA	AI101538	Drainago						
File AT02 Pond.SRCX	Checked by		Drainage						
Innovyze	Source Contro	1 2020.1.3							
<u>N</u>	<u>Model Details</u>								
Storage is Online Cover Level (m) 51.100									
<u>Tank</u>	<u>or Pond Struct</u>	ure							
Inver	rt Level (m) 49.9	00							
Depth (m) Area (m²) Dep			(m²)						
0.000 2500.0	0.800 2943.5	1.100 31	119.1						
<u>Hydro-Brake®</u>	Optimum Outfl	<u>ow Control</u>							
Unit	Reference MD-SH	E-0372-8500-0800-	-8500						
	n Head (m)	(0.800						
5	Flow (l/s) Flush-Flo™	Calcul	85.0 lated						
		nise upstream sto							
	pplication	Sui	rface						
1	Available meter (mm)		Yes 372						
	Level (m)	49	9.900						
Minimum Outlet Pipe Diam			450						
Suggested Manhole Dia	meter (mm)		2100						
Control Po:	ints Head (m) Flow (l/s)							
Design Point (Ca									
	Flush-Flo™ 0.4 Kick-Flo® 0.7								
Mean Flow over H		- 61.9							
The hydrological calculations have b Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised the invalidated	Should another ty	ype of control de	evice other than a						
Depth (m) Flow (1/s) Depth (m) Flow	a (l/s) Depth (m)	Flow (1/s) Dept	th (m) Flow (l/s)						
0.100 10.5 1.200	103.4 3.000		7.000 244.9						
0.200 37.2 1.400	111.5 3.500		7.500 253.4						
0.300 70.1 1.600 0.400 83.9 1.800	119.0 4.000 126.0 4.500		8.000 261.5 8.500 266.7						
0.500 85.0 2.000	132.6 5.000		9.000 274.6						
0.600 83.9 2.200	139.0 5.500		9.500 282.3						
0.800 85.0 2.400 1.000 94.7 2.600	145.0 6.000 150.8 6.500								
1.000 54.7 2.000	100.01 0.000	230.2							
©198	32-2020 Innovyz	ze							

C. Water Quality Simple Index Approach

SIMPLE INDEX APPROACH: AN INTRODUCTION

1. The tool has been developed on behalf of SEPA to support the implementation (in Scotland) of the water quality management design methods set out in the SuDS Manual.

2. This tool provides an automated method for applying the Simple Index Approach to check the sufficiency of proposed SuDS components in mitigating water quality risks to receiving waterbodies.

3. There are some differences in the required approach in England, Wales and Northern Ireland. If the tool is used in these regions, the relevant supporting 'Design Conditions' stated by the tool must be fully considered and implemented.

4. Water quality design criteria and standards are set out in Chapter 4 of the SuDS Manual. Table 4.3 in the Manual sets out the minimum water quality management requirements for discharges to receiving surface waters and groundwater. Use of the Simple Index Approach is one of the key methods.

5. Chapter 26 of the SuDS Manual sets out the design methods for water quality management. The Simple Index Approach is described in Section 26.7.1 of the Manual and this text should be referred to when using this tool. Appendix C of the SuDS Manual also includes worked examples of applying the Simple Index Approach, although not using this tool.

6. The spreadsheet consists of 5 separate sheets as follows:

Sheet Number Sheet Title	Sheet Description
1 Introduction (this sheet)	Introduction and context
2 The Tool	The tool (requiring user inputs)
3 Flowchart	A flowchart describing the process required to be taken by a tool user
4 Summary	Printable results summary table
5 Land Use Hazard Indices	The hazard indices used by the tool for each land use hazard type (for information only)
6 SuDS Pollution Mitigation Indices	The pollution mitigation indices used by the tool for each SuDS component type (for information only)

HR Wallingford shall not be liable for any direct or indirect damage claim, loss, cost, expense or liability howsoever arising out of the use or impossibility to use the tools, even when HR Wallingford has been informed of the possibility of the same. The user hereby indemnifies HR Wallingford from and against any damage claim, loss, expense or liability resulting from any action taken against HR Wallingford that is related in any way to the use of the tool or any reliance made in respect of the output of such use by any person whatsoever. HR Wallingford does not guarantee that the tool's functions meet the requirements of any person, nor that the tool is free from errors.

SIMPLE INDEX APPROACH: TOOL

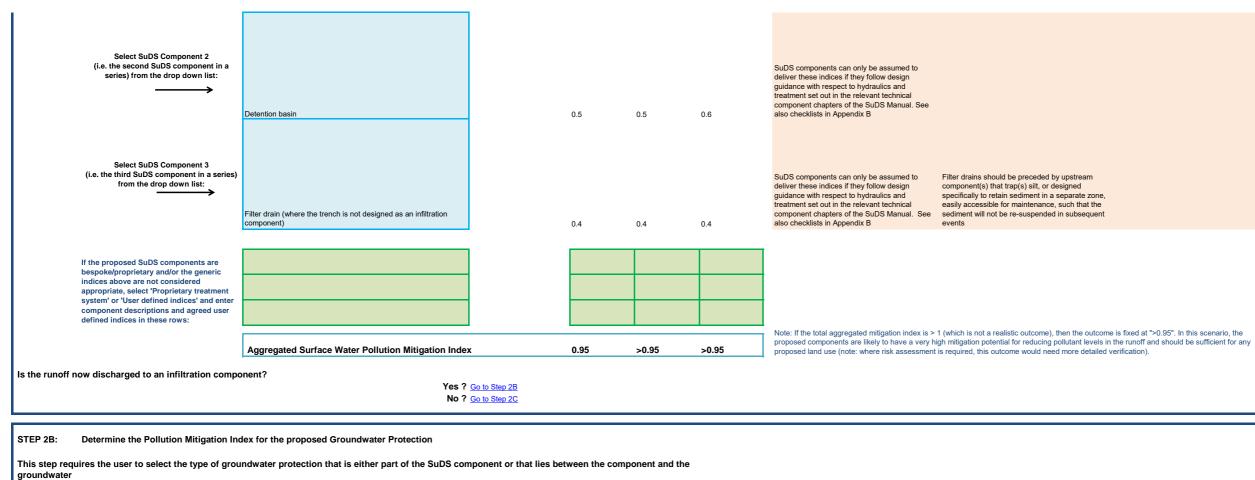
Select SuDS Component 1 (i.e. the upstream SuDS component) from

the drop down list:

HRW shall not be liable for any direct or indirect damage claim, loss, cost, expense or liability howsoever arising out of the use or impossibility to use the tools, even when HRW has been informed of the possibility of the same. The user hereby indemnifies HRW from and against any damage claim, loss, expense or liability resulting from any action taken against HRW that is related in any way to the use of the tool or any reliance made in respect of the output of such use by any person whatsoever. HRW does not guarantee that the tool's functions meet the requirements of any person, nor that the tool is free from errors.

1. The steps set out in the tool should be applied for each inflow or 'runoff area' (ie each impermeable surface area separately discharging to a SuDS component). 2. The supporting 'Design Conditions' stated by the tool must be fully considered and implemented in all cases. 3. Relevant design examples are included in the SuDS Manual Appendix C. 4. Each of the steps below are part of the process set out in the flowchart on Sheet 3. 5. Sheet 4 summarises the selections made below and indicates the acceptability of the proposed SuDS components. DROP DOWN LIST RELEVANT INPUTS NEED TO BE SELECTED FROM THESE LISTS, FOR EACH STEP USER ENTRY USER ENTRY CELLS ARE ONLY REQUIRED WHERE INDICATED BY THE TOOL STEP 1: Determine the Pollution Hazard Index for the runoff area discharging to the proposed SuDS scheme This step requires the user to select the appropriate land use type for the area from which the runoff is occurring f the land use varies across the 'runoff area', either: - use the land use type with the highest Pollution Hazard Index - apply the approach for each of the land use types to determine whether the proposed SuDS design is sufficient for all. If it is not, consider collecting more hazardous runoff separately and providing additional treatment. If the generic land use types suggested are not applicable, select 'Other' and enter a description of the land use of the runoff area and agreed user defined indices in the row below the drop down lists. Pollution Hazard Indices DESIGN CONDITIONS Total Susper Hazard Runoff Area Land Use Description Solids 2 Metals Hydrocarbons In Scotland and Northern Ireland the Where indices are approved by the environmental regulator should be consulted as environmental regulator as part of the required risk assessment process, these should be Risk sites. In England and Wales, the Select land use type from the drop down li (or 'Other' if none applicable); entered in the 'User Defined Indices' row below. If environmental regulator should be consulted prior Enter User indices are not considered appropriate, the risk to design (for pre-permitting advice) to determine Defined Indices assessment should use alternative measures of the most appropriate design approach and requirements for risk assessment row below pollution hazard for the site. If the generic land use types in the drop down list above are not applicable, select 'Other' and enter a description of the land use of the runoff area and agreed user Construction areas to facilitate high-voltage substation and converter station installation. 0.8 0.8 0.9 defined indices in this row: Landuse Pollution Hazard Index 0.9 0.8 0.8 STEP 2A: Determine the Pollution Mitigation Index for the proposed SuDS components This step requires the user to select the proposed SuDS components that will be used to treat runoff - before it is discharged to a receiving surface waterbody or downstream infiltration component If the runoff is discharged directly to an infiltration component, without upstream treatment, select 'None' for each of the 3 SuDS components and move to Step 2B This step should be applied to evaluate the water quality protection provided by proposed SuDS components for discharges to receiving surface waters or downstream infiltration components (note: in England and Wales this will include components that allow any amount of infiltration, however small, even where infiltration is not specifically accounted for in the design). f you have fewer than 3 components, select 'None' for the components that are not required If the proposed component is bespoke and/or a proprietary treatment product and not generically described by the suggested components, then 'Proprietary treatment system' or 'User defined indices' should be selected and a description of the component and agreed user defined indices should be entered in the rows below the drop down lists DESIGN CONDITIONS Pollution Mitigation Indices Total Sus SuDS Component Description 2 Hydrocarbons 1

0.5


0.6

SuDS components can only be assumed to deliver these indices if they follow design guidance with respect to hydraulics and treatment set out in the relevant technical component chapters of the SuDS Manual. See also checklists in Appendix B

Mott MacDonald Restricted

0.6

3

This step should be applied where a SuDS component is specifically designed to infiltrate runoff (note: in England and Wales this will include components that allow any amount of infiltration, however small, even where infiltration is not specifically accounted for in the design).

'Groundwater protection' describes the proposed depth of soil or other material through which runoff will flow between the runoff surface and the underlying groundwater.

Where the discharge is to surface waters and risks to groundwater need not be considered, select 'None'

If the proposed groundwater protection is bespoke and/or a proprietary product and not generically described by the suggested measures, then a description of the protection and agreed user defined	
indices should be entered in the row below the drop down list	

		Pollution Mitigation Indices						
			Total Suspender Solids	d Metals	Hydrocarbons	1	2	2
Select type of groundwater protection from the drop down list:								
\longrightarrow								
	None							
If the proposed groundwater protection is bespoke/proprietary and/or the generic								
indices above are not considered appropriate, select 'Proprietary product' or								
'User defined indices' and enter a description of the protection and agreed								
user defined indices in this row:		l						
	Groundwater Protection Pollution Mitigation Index		0	0	0			

STEP 2C: Determine the Combined Pollution Mitigation Indices for the Runoff Area

This is an automatic step which combines the proposed SuDS Pollution Mitigation Indices with any Groundwater Protection Pollution Mitigation Indices

	Combined Pollution Mitigation Indices Total Suspended			
	Solids	Metals	Hydrocarbons	
Combined Pollution Mitigation Indices for the Runoff Area	0.95	>0.95	>0.95	

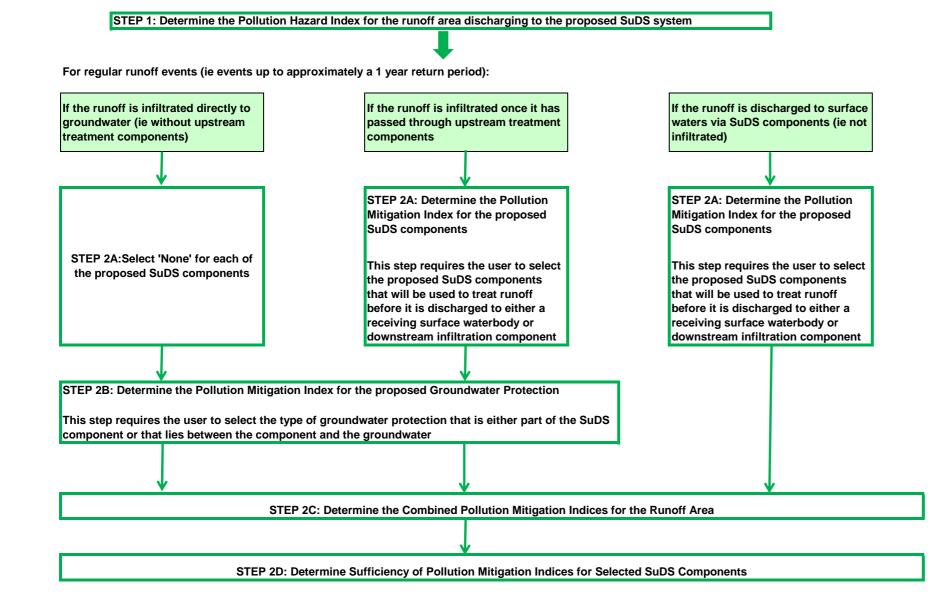
Note: If the total aggregated mitigation index is > 1 (which is not a realistic outcome), then the outcome is fixed at ">0.95". In this scenario, the proposed components are likely to have a very high mitigation potential for reducing pollutant levels in the runoff and should be sufficient for any proposed land use (note: where risk assessment is required, this outcome would need more detailed verification).

DESIGN CONDITIONS

3

1

STEP 2D: Determine Sufficiency of Pollution Mitigation Indices for Selected SuDS Components


This is an automatic step which compares the Combined Pollution Mitigation Indices with the Land Use Hazard Indices, to determine whether the proposed components are sufficient to manage each pollutant category type

Then the combined mitigation index exceeds the land use pollution hazard index, then the proposed components are considered sufficient in providing pollution risk mitigation. England and Wales, where the discharge is to protected surface waters or groundwater, an additional treatment component (ie over and above that required for standard discharges), or other equivalent protection, is quired that provides environmental protection in the event of an unexpected pollution event or poor system performance. Protected surface waters are those designated for drinking water abstraction. In England and Wales, otected groundwater resources are defined as Source Protection Zone 1. In Northern Ireland, a more precautionary approach may be required and this should be checked with the environmental regulator on a site by site asis.			DESIGN CONDITIONS	
	Sufficie Total Suspen	ncy of Pollution M ded	itigation Indices	
	Solids	Metals	Hydrocarbons	1
	Sufficient	Sufficient	Sufficient	Reference to local planning documents should also be made to identify any additional protection required for sites due to habitat conservation (see <i>Chapter 7 The SuDS design process</i>). The implications of developments on or within close proximity to an area with an environmental designation, such as a Site of Special Scientific Interest (SSSI), should be considered via consultation with relevant conservation bodies such as Natural Encland

SIMPLE INDEX APPROACH: PROCESS FLOW CHART

HRW shall not be liable for any direct or indirect damage claim, loss, cost, expense or liability howsoever arising out of the use or impossibility to use the tools, even when HRW has been informed of the possibility of the same. The user hereby indemnifies HRW from and against any damage claim, loss, expense or liability resulting from any action taken against HRW that is related in any way to the use of the tool or any reliance made in respect of the output of such use by any person whatsoever. HRW does not guarantee that the tool's functions meet the requirements of any person, nor that the tool is free from errors.

SIMPLE INDEX APPROACH: SUMMARY TABLE

HRW shall not be liable for any direct or indirect damage claim, loss, cost, expense or liability howsoever arising out of the use or impossibility to use the tools, even when HRW has been informed of the possibility of the same. The user hereby indemnifies HRW from and against any damage claim, loss, expense or liability resulting from any action taken against HRW that is related in any way to the use of the tool or any reliance made in respect of the output of such use by any person whatsoever. HRW does not guarantee that the tool's functions meet the requirements of any person, nor that the tool is free from errors.

SUMMARY TABLE			DESIGN CI	ONDITIONS
		1	2	3
	Construction areas to facilitate high-voltage substation and converter station installation. 0.8 0.8 0.9	Where indices are approved by the environmental regulator as part of the required risk assessment process, these should be entered in the 'User Defined Indices' row below. If indices are not considered appropriate, the risk assessment should use	In Scotland and Northern Ireland, the environmental regulator should be consulted as part of the licensing process required for High Risk sites. In England and Wales, the environmental regulator should be consulted prior to design (for pre-permitting advice) to determine the most appropriate design approach and requirements for risk assessment.	
SuDS components proposed				
Component 1	Swale	SuDS components can only be assumed to deliver these indices if they follow design guidance with respect to hydraulics and treatment set out in the relevant technical component chapters of the SuDS Manual. See also checklists in Appendix B		
Component 2	Detention basin	SuDS components can only be assumed to deliver these indices if they follow design guidance with respect to hydraulics and treatment set out in the relevant technical component chapters of the SuDS Manual. See also checklists in Appendix B		
Component 3	Filter drain (where the trench is not designed as an infiltration component)	SuDS components can only be assumed to deliver these indices if they follow design guidance with respect to hydraulics and treatment set out in the relevant technical component chapters of the SuDS Manual. See also checklists in Appendix B	Inal trap(s) sit, or designed specifically to retain sediment in a	
SuDS Pollution Mitigation Indices				
TSS Metals	0.95			
Hydrocarbons				
Groundwater protection type	None			
Groundwater protection Pollution Mitigation Indices TSS Metals	0 0			
Hydrocarbons	0			
Combined Pollution Mitigation Indices TSS Metals Hydrocarbons	0.95 >0.95 >0.95	Reference to local planning documents should also be made to identify any additional protection required for sites due to habitat conservation (see Chapter 7 The SuDS design process). The implications of developments on or within close		
Acceptability of Pollution Mitigation TSS Metals Hydrocarbons	Sufficient Sufficient Sufficient	proximity to an area with an environmental designation, such as a Site of Special Scientific Interest (SSSI), should be considered via consultation with relevant conservation bodies such as Natural England		

4

SIMPLE INDEX APPROACH: LAND USE HAZARD INDICES

HRW shall not be liable for any direct or indirect damage claim, loss, cost, expense or liability howsoever arising out of the use or impossibility to use the tools, even when HRW has been informed of the possibility of the same. The user hereby indemnifies HRW from and against any damage claim, loss, expense or liability resulting from any action taken against HRW that is related in any way to the use of the tool or any reliance made in respect of the output of such use by any person whatsoever. HRW does not guarantee that the tool's functions meet the requirements of any person, nor that the tool is free from errors.

Land use characte	erisation (User Define)	Hazard Level (Tool Outcome)	<i>Pollution Ind</i> Total Suspended Solids	ices (Tool C Metals	utcome) Hydrocarbons	DESIGN CONDITION (Tool Outcome)	C
LAND USE	ТҮРЕ						t
ROOF		Very low Very low	0.2 0.3				ſ
	Commercial/Industrial roofing: Low potential for metal leaching	Low	0.3	0.4	0.05	This classification should be informed by an assessment of the leachability of metals from the adopted roofing materials. Particular risks are likely to be posed by materials that include copper and galvanised steel This classification should be informed by an assessment of the leachability of metals from the adopted roofing materials. Particular risks are likely to be posed by materials	
	Commercial/Industrial roofing: Medium potential for metal lead	Medium	0.3	0.6	0.05	that include copper and galvanised steel This classification should be informed by an assessment of the leachability of metals from the adopted roofing materials. Particular risks are likely to be posed by materials	
	Commercial/Industrial roofing: High potential for metal leachin	High	0.3	0.8	0.05		
PARKING	Individual driveway Residential parking	Low Low	0.5 0.5		0.4 0.4		Γ
	Non-residential parking with infrequent change (e.g. schools, offices, < 300 traffic movements a day)	Low	0.5	0.4	0.4		
	Non-residential car parking with frequent change (eg hospitals, retail)	Medium	0.7	0.6	0.7		
YARDS/DEPOTS	Standard commercial yard or delivery area	Medium	0.7	0.6	0.7	This classification is not appropriate for haulage yards, lorry parks, waste management areas, or chemical storage/handling zones	Γ
	Haulage yard	High	0.8	0.8	0.9	These indices should only be used if considered appropriate by the required risk assessment and where approved by the regulator. If they are not considered appropriate, the risk assessment should use alternative measures of pollution hazard for the site.	lr c E to d
	Lorry park	High	0.8	0.8	0.9	These indices should only be used if considered appropriate by the required risk assessment and where approved by the regulator. If they are not considered appropriate, the risk assessment should use alternative measures of pollution hazard for the site.	lr C E to d
	Waste handling/management/distribution site	High	0.8	0.8	0.9	These indices should only be used if considered appropriate by the required risk assessment and where approved by the regulator. If they are not considered appropriate, the risk assessment should use alternative measures of pollution hazard for the site.	Ir C E tc d
	Site where chemicals and fuels (other than domestic fuel oil) are to be delivered, handled, stored, used or manufactured	High	0.8	0.8	0.9	These indices should only be used if considered appropriate by the required risk assessment and where approved by the regulator. If they are not considered appropriate, the risk assessment should use alternative measures of pollution hazard for the site.	Ir C E tc d
	Other industrial site area	High	0.8	0.8	0.9	These indices should only be used if considered appropriate by the required risk assessment and where approved by the regulator. If they are not considered appropriate, the risk assessment should use alternative measures of pollution hazard for the site.	lr c E to d
	Low traffic roads (e.g. residential roads and general access				5.0		f
ROADS	roads, < 300 traffic movements/day) Roads (excluding low traffic roads, highly frequented lorry	Low	0.5	0.4	0.4		ſ
		Medium	0.7	0.6	0.7		L
	Highly frequented lorry approaches to industrial estates	High	0.8	0.8	0.9	These indices should only be used if considered appropriate by the required risk assessment and where approved by the regulator. If they are not considered appropriate, the risk assessment should use alternative measures of pollution hazard for the site.	lr c E to d

DESIGN CONDITION (Tool Outcome)

2

In Scotland and Northern Ireland, the environmental regulator should be consulted as part of the licensing process required for High Risk sites. In England and Wales, the environmental regulator should be consulted prior to design (for pre-permitting advice) to determine the most appropriate design approach and requirements for risk assessment.

In Scotland and Northern Ireland, the environmental regulator should be consulted as part of the licensing process required for High Risk sites. In England and Wales, the environmental regulator should be consulted prior to design (for pre-permitting advice) to determine the most appropriate design approach and requirements for risk assessment.

In Scotland and Northern Ireland, the environmental regulator should be consulted as part of the licensing process required for High Risk sites. In England and Wales, the environmental regulator should be consulted prior to design (for pre-permitting advice) to determine the most appropriate design approach and requirements for risk assessment.

In Scotland and Northern Ireland, the environmental regulator should be consulted as part of the licensing process required for High Risk sites. In England and Wales, the environmental regulator should be consulted prior to design (for pre-permitting advice) to determine the most appropriate design approach and requirements for risk assessment.

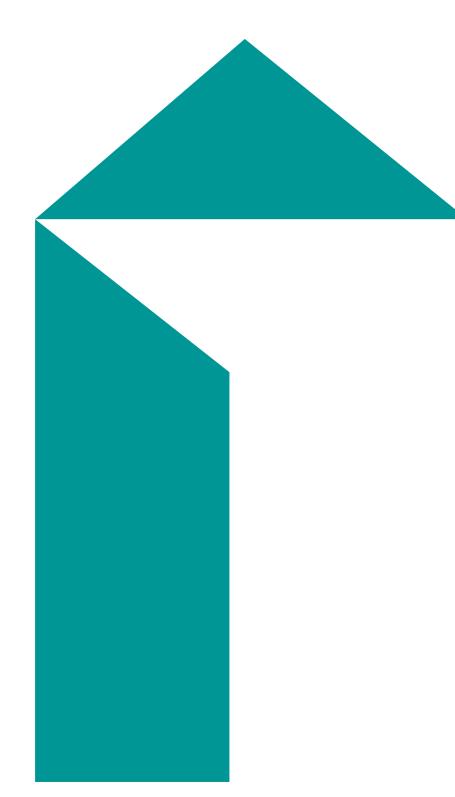
In Scotland and Northern Ireland, the environmental regulator should be consulted as part of the licensing process required for High Risk sites. In England and Wales, the environmental regulator should be consulted prior to design (for pre-permitting advice) to determine the most appropriate design approach and requirements for risk assessment.

In Scotland and Northern Ireland, the environmental regulator should be consulted as part of the licensing process required for High Risk sites. In England and Wales, the environmental regulator should be consulted prior to design (for pre-permitting advice) to determine the most appropriate design approach and requirements for risk assessment.

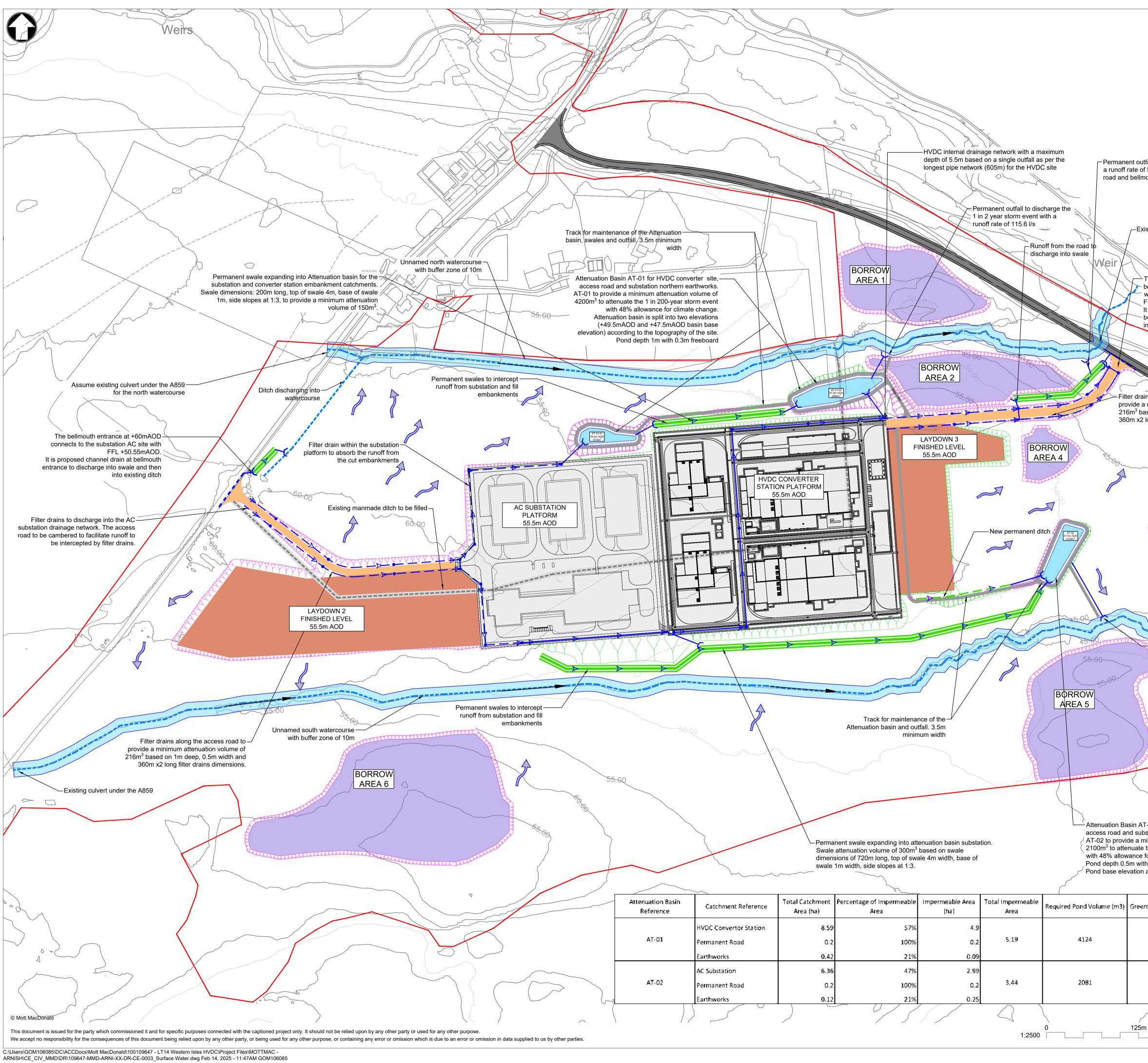
	Trunk roads/motorways	High	n/a	n/a	n/a	When designing SuDS for motorways / trunk roads, the guidance and risk assessment process set out in HD45/09 should always be followed. These indices should only be used if considered appropriate as part of any detailed risk assessment undertaken for the scheme
OTHER	Other					Where indices are approved by the environmental regulator as part of the required risk assessment process, these should be entered in the 'User Defined Indices' row below. If indices are not considered appropriate, the risk assessment should use alternative measures of pollution hazard for the site.

In Scotland and Northern Ireland, the environmental regulator should be consulted as part of the licensing process required for High Risk sites. In England and Wales, the environmental regulator should be consulted prior to design (for pre-permitting advice) to determine the most appropriate design approach and requirements for risk assessment.

SIMPLE INDEX APPROACH: POLLUTION MITIGATION INDICES

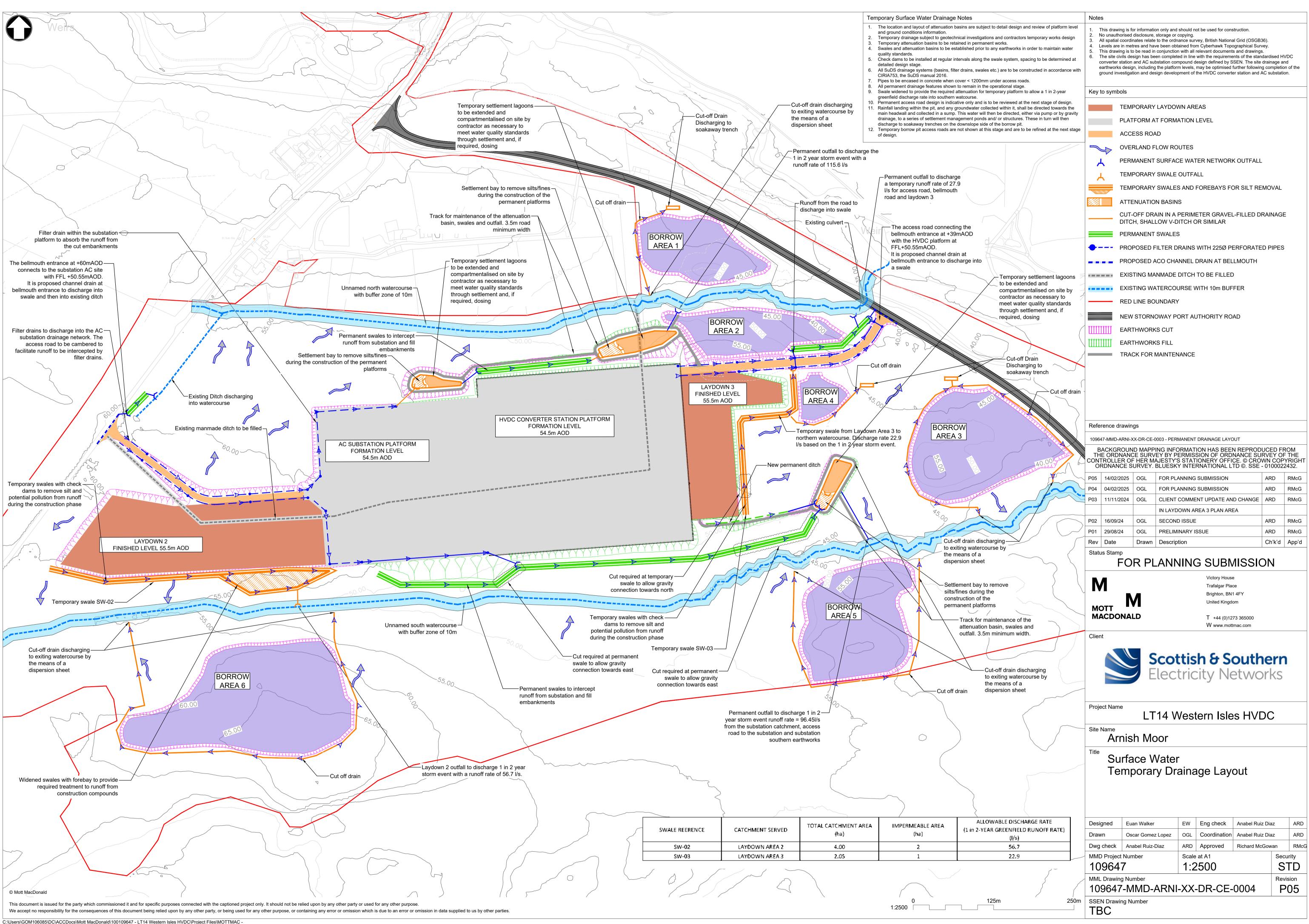


RW shall not be liable for any direct or indirect damage claim, loss, cost, expense or liability howsoever arising out of the use or impossibility to use the tools, even when HRW has been informed of the use of isobility for any action taken against HRW that is related in any way to the use of the tool or any reliance made in respect of the output of such use by any person whatsoever. HRW does not guarantee that the tool's functions meet the requirements of any person, nor that the tool is free from errors.


Pollution Mitigation Indices (Tool Outcome) Total Suspended Solids	Metals	Hydrocarbons	DESIGN CONDITION (Tool Outcome) 1	DESIGN CONDITION (Tool Outcome)	DESIGN CONDITION (TO
			of subsoil or aquifer material between the infiltration surface and the maximum likely groundwater level. Infiltration components should always be preceded by upstream component(s) that trap(s) silt, or designed specifically to retain sediment in a separate lined zone, easily	The underlying soils must provide good contaminant attenuation potential (eg as recommended in Sniffer 2008 (a) and (b) / Scott Wilson (2010) or	
0.6	50.5	0.	6 re-suspended in subsequent events All designs must include a minimum of 1 m unsaturated depth	provide equivalent protection to the underlying groundwater	
			and the maximum likely groundwater level. Infiltration components should always be preceded by upstream component(s) that trap(s) silt, or designed specifically to retain sediment in a separate lined zone, easily		
0.4	4 <u>0.3</u>	0.:	All designs must include a minimum of 1 m unsaturated depth of subsoil or aquifer material between the infiltration surface and the maximum likely groundwater level. Infiltration components should always be preceded by	provide equivalent protection to the underlying groundwater The infiltration trench must include a suitable depth filtration layer that provides treatment (ie graded gravel with sufficient smaller particles but not single size coarse aggregate such as 20mm gravel). The underlying soils must provide good contaminant attenuation potential	
0.4	4 0.4	0.4	specifically to retain sediment in a separate lined zone, easily accessible for maintenance, such that the sediment will not be 4 re-suspended in subsequent events	(eg as recommended in Sniffer 2008 (a) and (b) / Scott Wilson (2010) or other appropriate guidance). Alternative depth and soil combinations must provide equivalent protection to the underlying groundwater	
			of subsoil or aquifer material between the infiltration surface and the maximum likely groundwater level. Infiltration components should always be preceded by upstream component(s) that trap(s) silt, or designed specifically to retain sediment in a separate lined zone, easily accessible for maintenance, such that the sediment will not be	The permeable pavement must include a suitable filtration layer provides treatment and must include a geotextile at the base separating the foundation from the sub-grade. The underlying soils must provide good contaminant attenuation potential (eg as recommended in Sniffer 2008 (a) and (b) / Scott Wilson (2010) or other appropriate guidance). Alternative depth and soil combinations must	
0.7	r0.e		All designs must include a minimum of 1 m unsaturated depth of subsoil or aquifer material between the infiltration surface and the maximum likely groundwater level. Infiltration components should always be preceded by upstream component(s) that trap(s) silt, or designed specifically to retain sediment in a separate lined zone, easily accessible for maintenance, such that the sediment will not be	The underlying soils must provide good contaminant attenuation potential (eg as recommended in Sniffer 2008 (a) and (b) / Scott Wilson (2010) or	
0.8	30.8	. 0.1	Detailed assessment of performance of designed component	groundwater level.	SEPA only considers pro exceptional circumstanc are not practicable. Pro considered appropriate f
			required as evidence of adopted indices. Enter indices approved by the environmental regulator in appropriate 'User Defined Indices' row below		where there is a requirer (SEPA, 2014) also provi on suitability of a proprie
			Detailed assessment of performance of designed component in reducing inflow concentrations of each pollutant type required as evidence of adopted indices. Enter indices approved by the environmental regulator in appropriate User Defined Indices' row below	All designs must include a minimum of 1 m unsaturated depth of subsoil or aquifer material between the infiltration surface and the maximum likely groundwater level. Infiltration components should always be preceded by upstream component(s) that trap(s) silt, or designed specifically to retain sediment in a separate lined zone, easily accessible for maintenance, such that the sediment will not be re-suspended in subsequent events	
Pollution Mitigation Indices (Tool Outcome)			COMMENT (Tool Outcome)		
Total Suspended Solids	Metals	Hydrocarbons	SuDS components can only be assumed to deliver these		
0.4	4 0.4	0.	hydraulics and treatment set out in the relevant technical component chapters of the SuDS Manual. See also checklists		
0.4	¢ 0.4	0.	indices if they follow design guidance with respect to hydraulics and treatment set out in the relevant technical component chapters of the SuDS Manual. See also checklists	Filter drains should be preceded by upstream component(s) that trap(s) silt, or designed specifically to retain sediment in a separate zone, easily accessible for maintenance, such that the sediment will not be re- suspended in subsequent events	
0.5	5 0.6	0.	SuDS components can only be assumed to deliver these indices if they follow design guidance with respect to hydraulics and treatment set out in the relevant technical component chapters of the SuDS Manual. See also checklists 6 in Appendix B		
			SuDS components can only be assumed to deliver these indices if they follow design guidance with respect to hydraulics and treatment set out in the relevant technical component chapters of the SuDS Manual. See also checklists		
			SuDS components can only be assumed to deliver these indices if they follow design guidance with respect to hydraulics and treatment set out in the relevant technical component chapters of the SuDS Manual. See also checklists		
0.5	50.5	0.1	6 in Appendix B		
07	7 0.7	0.	SuDS components can only be assumed to deliver these indices if they follow design guidance with respect to hydraulics and treatment set out in the relevant technical component chapters of the SuDS Manual. See also checklists 5 in Appendix B	Ponds/wetlands should be preceded by an upstream component(s) that trap(s) silt, or designed specifically to retain sediment in a separate zone, easily accessible for maintenance, such that the sediment will not be re- suspended in subsequent events	
	Total Suspended Solids 0.1 0.1 0.1 0.2 0.1 0.3 0.1 0.4 0.1 0.5 0.1 0.6 0.1 0.7 0.1 0.8 0.1 0.1 0.1 0.2 0.1 0.3 0.1 0.4 0.1 0.5 0.1 0.6 0.1 0.7 0.1 0.8 0.1 0.1 0.1 0.1 0.1	Total Suspended Solids Metals 0.6 0.5 0.7 0.5 0.8 0.6 0.9 0.4 0.1 0.5 0.2 0.5 0.3 0.5 0.4 0.5 0.5 0.5 0.6 0.5 0.7 0.6 0.8 0.6 0.9 0.6 0.9 0.6 0.9 0.6 0.9 0.6 0.9 0.6 0.9 0.6 0.9 0.6 0.9 0.6 0.9 0.6 0.9 0.6 0.9 0.6 0.9 0.6 0.9 0.6 0.9 0.6 0.9 0.6	Total Supported Solds Mail Hydrocartoons 04 05 0 0 04 03 0 0 0 04 04 04 0 0 0 0 04 04 04 04 0	Total Bacyanidal Balcia Yantak Proceeding Instrumentation Instrumentation Instrumentation 0 <	Tan Mandel Mark Yeak Yeak Joint Control Joint Control Joint Control All and the second of the second o

(Tool Outcome)	DESIGN CONDITION (Tool Outcome)
3	4
roprietary treatment systems as appropriate in	See Chapter 15 Proprietary treatment systems for approaches to demonstrate product performance. Note: a British
ces where other types of SuDS component	Water/Environment Agency assessment Code of Practice is
oprietary treatment systems may also be for existing sites that are causing pollution	currently under development that will allow manufacturers to complete an agreed test protocol for systems intended to treat
ement to retrofit treatment. WAT-RM-08	contaminated surface water runoff. Full details can be found
rides a flow chart with a summary of checks	at: http://www.britishwater.co.uk/Publications/codes-of-
etary system	practise.aspx.

Pro	prietary treatment system	0	o		Detailed assessment of performance of designed component in reducing inflow concentrations of each pollutant type	exceptional circumstances where other types of SuDS component are not practicable. Proprietary treatment systems may also be considered appropriate for existing sites that are causing pollution where there is a requirement to retrofit treatment. WAT-RM-08 (SEPA, 2014) also provides a flow chart with a summary of checks on suitability of a proprietary	Agency assessment Code of Practice is currently under development that will allow manufacturers to complete an agreed test protocol for	
Use	r defined indices	0	0		Detailed assessment of performance of designed component in reducing inflow concentrations of each pollutant type required as evidence of adopted indices. Enter indices approved by the environmental regulator in appropriate 'User Defined Indices' row below			
Nor	e	0	0	0				


mottmac.com

	2. 1	No unauthoris	ed disclosure	, storage or	copying.	not be used for con rvey, British Nation		6).	
	4. l 5.	Levels are in I This drawing	metres and ha	ave been ob n conjunctio	otained fro on with all	om Cyberhawk Top relevant documen poding during a 1 ir	ographical Surve ts and drawings.	ey.	8% climate
	7.	change allowa The location a	ance in accord and layout of a	dance with s attenuation	SEPA's pe	eak rainfall intensit e subject to detail o	y allowances by i	river basi	in region.
	8. (detailed desig	to be installed in stage.	at regular i		long the swale sys			
		CIRIA753, the	e SuDS manua	al 2016.		, swales etc.) are to 200mm under acc		in accord	Jance with
	11. I 12.	Permanent ac The site civils	ccess road des design has b	sign is indic een comple	ative only ted in line	and is to be review with the requirem design defined by \$	wed at the next s ents of the stand	ardised H	HVDC
		earthworks de	esign, includin	g the platfo	rm levels,	may be optimised the HVDC conver	further following	completi	ion of the
	Key t	to symbols							
fall to discharge 5 l/s for access			PERMAN	ENT ACC	ESS R	OAD			
outh road	2		TEMPOR	ARY LAY	'DOWN	AREAS			
			PERMEA	BLE PLA	TFORM	1			
		•				ATER DRAIN			
sting culvert	- (INS WITH 225			IPES
\int			OVERLAN			IEL DRAIN AT	BELLWOUT	1	
T Dand						LS WATER NETW	ORK OUTEA		
The access road connecting the pellmouth entrance at +39mAOD	-		PERMAN						
with the HVDC platform at FFL+50.55mAOD. t is proposed channel drain at			EXISTING	G MANMA	DE DI		/ERTED		
bellmouth entrance to discharge nto a swale			EXISTING	G WATER	COUR	SE WITH 10m	BUFFER		
	_		RED LINE	E BOUND	ARY				
	ไ		EARTHW	ORKS CI	JT				
	1		EARTHW	ORKS FI	LL				
			NEW STO	ORNOWA	Y POR	T AUTHORITY	ROAD		
ins along the access road to minimum attenuation volume of			ATTENUA						
ased on 1m deep, 0.5m width and long filter drains dimensions.			TRACK F	OR MAIN	ITENAN	NCE			
A A A A A A A A A A A A A A A A A A A									
	Refe	rence draw	vinas						
BORROW	Reference drawings 109647-MMD-ARNI-XX-DR-CE-0004 - TEMPORARY DRAINAGE LAYOUT								
AREA 3	B	ACKGROL	JND MAPP		ORMAT	ION HAS BEEI	N REPRODU	CED F	ROM
-8-	TH CONT	E ORDNAI FROLLER (NCE SURV OF HER M	'EY BY P AJESTY':	ERMISS S STAT	SION OF ORD IONERY OFFI RNATIONAL L	NANCE SUR' CE. © CROW	VEY O /N COF	f the Pyright
	P05	14/02/2025				SUBMISSION		ARD	RMcG
	P04	04/02/2025				SUBMISSION		ARD	RMcG
ALA ALAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	P03	11/11/2024	4 OGL					ARD	RMcG
F. S. S.	P02	09/10/2024	4 OGL	IN LAYD	_	REA 3 PLAN ARI		ARD	RMcG
	P01	16/09/24	SMcG	FIRST IS	SUE			ARD	RMcG
	Rev	Date	Drawn	Descrip	tion			Ch'k'd	App'd
	Statu	us Stamp FC			JINC	G SUBN	/ISSIO	N	
Permanent outfall to discharge 1 in 2 year storm event runoff rate = 96.45l/s						Victory House	9		
from the substation						Trafalgar Pla Brighton, BN			
substation and substation southern earthworks	мс	ттс І	Μ			United Kingdo	om		
	MA	ACDON	ALD			T +44 (0)12 W www.mott			
	Clien	ıt							
						h&S			
			/ L	lec	tric	city Ne	etwo	ſKS	
\sim									
	Proje	ect Name	. –	- 4 1 1					
-02 for AC substation site,	0:4-1			14 V	vest	tern Isle	SHVD		
station southern earthworks. inimum attenuation volume of	Sile	Name Arni	sh Mo	oor					
the 1 in 200-year storm event for climate change. n 0.3m freeboard.	Title	<u> </u>		Voto					
at +47.5mAOD			ace V			age Lay	out		
						-90 Lay	JUL		
nfield Runoff (1:2 γr) (l/s)									
115.6	Desię	gned E	Euan Walker		EW	Eng check	Anabel Ruiz I	Diaz	ARD
	Draw		Oscar Gomez		OGL	Coordination	Anabel Ruiz I		ARD
~		check A	Anabel Ruiz I umber	Diaz	ARD Scale	Approved at A1	Richard McG		RMc curity
96.4		9647	สาามังไ			2500			STD
	MML	. Drawing N							vision
				AKNI	-XX-	-DR-CE-	0003		P05
1 250m	SSE	N Drawing	INUMber						

TBC

Notes

ARNISH\CE_CIV_MMD\DR\109647-MMD-ARNI-XX-DR-CE-0004_ Surface Water Temp.dwg Feb 14, 2025 - 11:50AM GOM106085